vibely / app.py
weightedhuman's picture
Update app.py
4f29d58 verified
raw
history blame contribute delete
757 Bytes
import gradio as gr
import tensorflow as tf
import tensorflow_text as text
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("weightedhuman/fine-tuned-bert-news-classifier")
def get_sentiment_score(text):
if text is not None:
serving_results = model \
.signatures['serving_default'](tf.constant(text))
serving_results = tf.sigmoid(serving_results['classifier'])
serving_results_np = serving_results.numpy()
for i in range(len(serving_results_np)):
output_value = serving_results_np[i][0]
return float(output_value)
else:
return ""
intf = gr.Interface(
fn = get_sentiment_score,
inputs = gr.Textbox(),
outputs = gr.Label()
)
intf.launch()