Spaces:
Runtime error
Runtime error
File size: 9,238 Bytes
7b90989 19008f8 7b90989 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
# suppress partial model loading warning
logging.set_verbosity_error()
import torch
import torch.nn as nn
import torchvision.transforms as T
import argparse
import numpy as np
from PIL import Image
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
def get_views(panorama_height, panorama_width, window_size=64, stride=8):
panorama_height /= 8
panorama_width /= 8
num_blocks_height = (panorama_height - window_size) // stride + 1
num_blocks_width = (panorama_width - window_size) // stride + 1
total_num_blocks = int(num_blocks_height * num_blocks_width)
views = []
for i in range(total_num_blocks):
h_start = int((i // num_blocks_width) * stride)
h_end = h_start + window_size
w_start = int((i % num_blocks_width) * stride)
w_end = w_start + window_size
views.append((h_start, h_end, w_start, w_end))
return views
class MultiDiffusion(nn.Module):
def __init__(self, device, sd_version='2.0', hf_key=None):
super().__init__()
self.device = device
self.sd_version = sd_version
print(f'[INFO] loading stable diffusion...')
if hf_key is not None:
print(f'[INFO] using hugging face custom model key: {hf_key}')
model_key = hf_key
elif self.sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif self.sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif self.sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
else:
model_key = self.sd_version #For custom models or fine-tunes, allow people to use arbitrary versions
#raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
# Create model
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae").to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder").to(self.device)
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet").to(self.device)
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
print(f'[INFO] loaded stable diffusion!')
@torch.no_grad()
def get_random_background(self, n_samples):
# sample random background with a constant rgb value
backgrounds = torch.rand(n_samples, 3, device=self.device)[:, :, None, None].repeat(1, 1, 512, 512)
return torch.cat([self.encode_imgs(bg.unsqueeze(0)) for bg in backgrounds])
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt):
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def encode_imgs(self, imgs):
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.sample() * 0.18215
return latents
@torch.no_grad()
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
@torch.no_grad()
def generate(self, masks, prompts, negative_prompts='', height=512, width=2048, num_inference_steps=50,
guidance_scale=7.5, bootstrapping=20):
# get bootstrapping backgrounds
# can move this outside of the function to speed up generation. i.e., calculate in init
bootstrapping_backgrounds = self.get_random_background(bootstrapping)
# Prompts -> text embeds
text_embeds = self.get_text_embeds(prompts, negative_prompts) # [2 * len(prompts), 77, 768]
# Define panorama grid and get views
latent = torch.randn((1, self.unet.in_channels, height // 8, width // 8), device=self.device)
noise = latent.clone().repeat(len(prompts) - 1, 1, 1, 1)
views = get_views(height, width)
count = torch.zeros_like(latent)
value = torch.zeros_like(latent)
self.scheduler.set_timesteps(num_inference_steps)
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
count.zero_()
value.zero_()
for h_start, h_end, w_start, w_end in views:
masks_view = masks[:, :, h_start:h_end, w_start:w_end]
latent_view = latent[:, :, h_start:h_end, w_start:w_end].repeat(len(prompts), 1, 1, 1)
if i < bootstrapping:
bg = bootstrapping_backgrounds[torch.randint(0, bootstrapping, (len(prompts) - 1,))]
bg = self.scheduler.add_noise(bg, noise[:, :, h_start:h_end, w_start:w_end], t)
latent_view[1:] = latent_view[1:] * masks_view[1:] + bg * (1 - masks_view[1:])
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latent_view] * 2)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the denoising step with the reference model
latents_view_denoised = self.scheduler.step(noise_pred, t, latent_view)['prev_sample']
value[:, :, h_start:h_end, w_start:w_end] += (latents_view_denoised * masks_view).sum(dim=0,
keepdims=True)
count[:, :, h_start:h_end, w_start:w_end] += masks_view.sum(dim=0, keepdims=True)
# take the MultiDiffusion step
latent = torch.where(count > 0, value / count, value)
# Img latents -> imgs
imgs = self.decode_latents(latent) # [1, 3, 512, 512]
img = T.ToPILImage()(imgs[0].cpu())
return img
def preprocess_mask(mask_path, h, w, device):
mask = np.array(Image.open(mask_path).convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask).to(device)
mask = torch.nn.functional.interpolate(mask, size=(h, w), mode='nearest')
return mask
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mask_paths', type=list)
parser.add_argument('--bg_prompt', type=str)
parser.add_argument('--bg_negative', type=str) # 'artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image'
parser.add_argument('--fg_prompts', type=list)
parser.add_argument('--fg_negative', type=list) # 'artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image'
parser.add_argument('--sd_version', type=str, default='2.0', choices=['1.5', '2.0'],
help="stable diffusion version")
parser.add_argument('--H', type=int, default=768)
parser.add_argument('--W', type=int, default=512)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--steps', type=int, default=50)
parser.add_argument('--bootstrapping', type=int, default=20)
opt = parser.parse_args()
seed_everything(opt.seed)
device = torch.device('cuda')
sd = MultiDiffusion(device, opt.sd_version)
fg_masks = torch.cat([preprocess_mask(mask_path, opt.H // 8, opt.W // 8, device) for mask_path in opt.mask_paths])
bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True)
bg_mask[bg_mask < 0] = 0
masks = torch.cat([bg_mask, fg_masks])
prompts = [opt.bg_prompt] + opt.fg_prompts
neg_prompts = [opt.bg_negative] + opt.fg_negative
img = sd.generate(masks, prompts, neg_prompts, opt.H, opt.W, opt.steps, bootstrapping=opt.bootstrapping)
# save image
img.save('out.png')
|