Spaces:
Runtime error
Runtime error
import glob | |
import os | |
import numpy as np | |
import cv2 | |
from pathlib import Path | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as T | |
import argparse | |
from PIL import Image | |
import yaml | |
from tqdm import tqdm | |
from transformers import logging | |
from diffusers import DDIMScheduler, StableDiffusionPipeline | |
from tokenflow_utils import * | |
from utils import save_video, seed_everything | |
# suppress partial model loading warning | |
logging.set_verbosity_error() | |
VAE_BATCH_SIZE = 10 | |
class TokenFlow(nn.Module): | |
def __init__(self, config, | |
frames=None, | |
# latents = None, | |
inverted_latents = None): | |
super().__init__() | |
self.config = config | |
self.device = config["device"] | |
sd_version = config["sd_version"] | |
self.sd_version = sd_version | |
if sd_version == '2.1': | |
model_key = "stabilityai/stable-diffusion-2-1-base" | |
elif sd_version == '2.0': | |
model_key = "stabilityai/stable-diffusion-2-base" | |
elif sd_version == '1.5': | |
model_key = "runwayml/stable-diffusion-v1-5" | |
elif sd_version == 'depth': | |
model_key = "stabilityai/stable-diffusion-2-depth" | |
else: | |
raise ValueError(f'Stable-diffusion version {sd_version} not supported.') | |
# Create SD models | |
print('Loading SD model') | |
pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda") | |
pipe.enable_xformers_memory_efficient_attention() | |
self.vae = pipe.vae | |
self.tokenizer = pipe.tokenizer | |
self.text_encoder = pipe.text_encoder | |
self.unet = pipe.unet | |
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler") | |
self.scheduler.set_timesteps(config["n_timesteps"], device=self.device) | |
print('SD model loaded') | |
# data | |
self.frames, self.inverted_latents = frames, inverted_latents | |
self.latents_path = self.get_latents_path() | |
# load frames | |
self.paths, self.frames, self.latents, self.eps = self.get_data() | |
if self.sd_version == 'depth': | |
self.depth_maps = self.prepare_depth_maps() | |
self.text_embeds = self.get_text_embeds(config["prompt"], config["negative_prompt"]) | |
# pnp_inversion_prompt = self.get_pnp_inversion_prompt() | |
self.pnp_guidance_embeds = self.get_text_embeds(config["pnp_inversion_prompt"], config["pnp_inversion_prompt"]).chunk(2)[0] | |
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'): | |
depth_maps = [] | |
midas = torch.hub.load("intel-isl/MiDaS", model_type) | |
midas.to(device) | |
midas.eval() | |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") | |
if model_type == "DPT_Large" or model_type == "DPT_Hybrid": | |
transform = midas_transforms.dpt_transform | |
else: | |
transform = midas_transforms.small_transform | |
for i in range(len(self.paths)): | |
img = cv2.imread(self.paths[i]) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
latent_h = img.shape[0] // 8 | |
latent_w = img.shape[1] // 8 | |
input_batch = transform(img).to(device) | |
prediction = midas(input_batch) | |
depth_map = torch.nn.functional.interpolate( | |
prediction.unsqueeze(1), | |
size=(latent_h, latent_w), | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0 | |
depth_maps.append(depth_map) | |
return torch.cat(depth_maps).to(torch.float16).to(self.device) | |
def get_pnp_inversion_prompt(self): | |
inv_prompts_path = os.path.join(str(Path(self.latents_path).parent), 'inversion_prompt.txt') | |
# read inversion prompt | |
with open(inv_prompts_path, 'r') as f: | |
inv_prompt = f.read() | |
return inv_prompt | |
def get_latents_path(self): | |
read_from_files = self.frames is None | |
# read_from_files = True | |
if read_from_files: | |
latents_path = os.path.join(self.config["latents_path"], f'sd_{self.config["sd_version"]}', | |
Path(self.config["data_path"]).stem, f'steps_{self.config["n_inversion_steps"]}') | |
latents_path = [x for x in glob.glob(f'{latents_path}/*') if '.' not in Path(x).name] | |
n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))] | |
print("n_frames", n_frames) | |
latents_path = latents_path[np.argmax(n_frames)] | |
print("latents_path", latents_path) | |
self.config["n_frames"] = min(max(n_frames), self.config["n_frames"]) | |
else: | |
n_frames = self.frames.shape[0] | |
self.config["n_frames"] = min(n_frames, self.config["n_frames"]) | |
if self.config["n_frames"] % self.config["batch_size"] != 0: | |
# make n_frames divisible by batch_size | |
self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"]) | |
print("Number of frames: ", self.config["n_frames"]) | |
if read_from_files: | |
print("YOOOOOOO", os.path.join(latents_path, 'latents')) | |
return os.path.join(latents_path, 'latents') | |
else: | |
return None | |
def get_text_embeds(self, prompt, negative_prompt, batch_size=1): | |
# Tokenize text and get embeddings | |
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, | |
truncation=True, return_tensors='pt') | |
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
# Do the same for unconditional embeddings | |
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, | |
return_tensors='pt') | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# Cat for final embeddings | |
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size) | |
return text_embeddings | |
def encode_imgs(self, imgs, batch_size=VAE_BATCH_SIZE, deterministic=False): | |
imgs = 2 * imgs - 1 | |
latents = [] | |
for i in range(0, len(imgs), batch_size): | |
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist | |
latent = posterior.mean if deterministic else posterior.sample() | |
latents.append(latent * 0.18215) | |
latents = torch.cat(latents) | |
return latents | |
def decode_latents(self, latents, batch_size=VAE_BATCH_SIZE): | |
latents = 1 / 0.18215 * latents | |
imgs = [] | |
for i in range(0, len(latents), batch_size): | |
imgs.append(self.vae.decode(latents[i:i + batch_size]).sample) | |
imgs = torch.cat(imgs) | |
imgs = (imgs / 2 + 0.5).clamp(0, 1) | |
return imgs | |
def get_data(self): | |
read_from_files = self.frames is None | |
# read_from_files = True | |
if read_from_files: | |
# load frames | |
paths = [os.path.join(self.config["data_path"], "%05d.jpg" % idx) for idx in | |
range(self.config["n_frames"])] | |
if not os.path.exists(paths[0]): | |
paths = [os.path.join(self.config["data_path"], "%05d.png" % idx) for idx in | |
range(self.config["n_frames"])] | |
frames = [Image.open(paths[idx]).convert('RGB') for idx in range(self.config["n_frames"])] | |
if frames[0].size[0] == frames[0].size[1]: | |
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames] | |
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device) | |
save_video(frames, f'{self.config["output_path"]}/input_fps10.mp4', fps=10) | |
save_video(frames, f'{self.config["output_path"]}/input_fps20.mp4', fps=20) | |
save_video(frames, f'{self.config["output_path"]}/input_fps30.mp4', fps=30) | |
else: | |
frames = self.frames | |
# encode to latents | |
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device) | |
# get noise | |
eps = self.get_ddim_eps(latents, range(self.config["n_frames"])).to(torch.float16).to(self.device) | |
if not read_from_files: | |
return None, frames, latents, eps | |
return paths, frames, latents, eps | |
def get_ddim_eps(self, latent, indices): | |
read_from_files = self.inverted_latents is None | |
# read_from_files = True | |
if read_from_files: | |
noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))]) | |
print("noisets:", noisest) | |
print("indecies:", indices) | |
latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt') | |
noisy_latent = torch.load(latents_path)[indices].to(self.device) | |
# path = os.path.join('test_latents', f'noisy_latents_{noisest}.pt') | |
# f_noisy_latent = torch.load(path)[indices].to(self.device) | |
# print(f_noisy_latent==noisy_latent) | |
else: | |
noisest = max([int(key.split("_")[-1]) for key in self.inverted_latents.keys()]) | |
print("noisets:", noisest) | |
print("indecies:", indices) | |
noisy_latent = self.inverted_latents[f'noisy_latents_{noisest}'][indices] | |
alpha_prod_T = self.scheduler.alphas_cumprod[noisest] | |
mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5 | |
eps = (noisy_latent - mu_T * latent) / sigma_T | |
return eps | |
def denoise_step(self, x, t, indices): | |
# register the time step and features in pnp injection modules | |
read_files = self.inverted_latents is None | |
if read_files: | |
source_latents = load_source_latents_t(t, self.latents_path)[indices] | |
else: | |
source_latents = self.inverted_latents[f'noisy_latents_{t}'][indices] | |
latent_model_input = torch.cat([source_latents] + ([x] * 2)) | |
if self.sd_version == 'depth': | |
latent_model_input = torch.cat([latent_model_input, torch.cat([self.depth_maps[indices]] * 3)], dim=1) | |
register_time(self, t.item()) | |
# compute text embeddings | |
text_embed_input = torch.cat([self.pnp_guidance_embeds.repeat(len(indices), 1, 1), | |
torch.repeat_interleave(self.text_embeds, len(indices), dim=0)]) | |
# apply the denoising network | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample'] | |
# perform guidance | |
_, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3) | |
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond) | |
# compute the denoising step with the reference model | |
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample'] | |
return denoised_latent | |
def batched_denoise_step(self, x, t, indices): | |
batch_size = self.config["batch_size"] | |
denoised_latents = [] | |
pivotal_idx = torch.randint(batch_size, (len(x)//batch_size,)) + torch.arange(0,len(x),batch_size) | |
register_pivotal(self, True) | |
self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx]) | |
register_pivotal(self, False) | |
for i, b in enumerate(range(0, len(x), batch_size)): | |
register_batch_idx(self, i) | |
denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size])) | |
denoised_latents = torch.cat(denoised_latents) | |
return denoised_latents | |
def init_method(self, conv_injection_t, qk_injection_t): | |
self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else [] | |
self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else [] | |
register_extended_attention_pnp(self, self.qk_injection_timesteps) | |
register_conv_injection(self, self.conv_injection_timesteps) | |
set_tokenflow(self.unet) | |
def save_vae_recon(self): | |
os.makedirs(f'{self.config["output_path"]}/vae_recon', exist_ok=True) | |
decoded = self.decode_latents(self.latents) | |
for i in range(len(decoded)): | |
T.ToPILImage()(decoded[i]).save(f'{self.config["output_path"]}/vae_recon/%05d.png' % i) | |
save_video(decoded, f'{self.config["output_path"]}/vae_recon_10.mp4', fps=10) | |
save_video(decoded, f'{self.config["output_path"]}/vae_recon_20.mp4', fps=20) | |
save_video(decoded, f'{self.config["output_path"]}/vae_recon_30.mp4', fps=30) | |
def edit_video(self): | |
save_files = self.inverted_latents is None # if we're in the original non-demo setting | |
if save_files: | |
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True) | |
self.save_vae_recon() | |
# self.save_vae_recon() | |
pnp_f_t = int(self.config["n_timesteps"] * self.config["pnp_f_t"]) | |
pnp_attn_t = int(self.config["n_timesteps"] * self.config["pnp_attn_t"]) | |
self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t) | |
noisy_latents = self.scheduler.add_noise(self.latents, self.eps, self.scheduler.timesteps[0]) | |
edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"])) | |
if save_files: | |
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_10.mp4') | |
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_20.mp4', fps=20) | |
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_30.mp4', fps=30) | |
print('Done!') | |
else: | |
return edited_frames | |
def sample_loop(self, x, indices): | |
save_files = self.inverted_latents is None # if we're in the original non-demo setting | |
# save_files = True | |
if save_files: | |
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True) | |
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")): | |
x = self.batched_denoise_step(x, t, indices) | |
decoded_latents = self.decode_latents(x) | |
if save_files: | |
for i in range(len(decoded_latents)): | |
T.ToPILImage()(decoded_latents[i]).save(f'{self.config["output_path"]}/img_ode/%05d.png' % i) | |
return decoded_latents | |
# def run(config): | |
# seed_everything(config["seed"]) | |
# print(config) | |
# editor = TokenFlow(config) | |
# editor.edit_video() | |
# if __name__ == '__main__': | |
# parser = argparse.ArgumentParser() | |
# parser.add_argument('--config_path', type=str, default='configs/config_pnp.yaml') | |
# opt = parser.parse_args() | |
# with open(opt.config_path, "r") as f: | |
# config = yaml.safe_load(f) | |
# config["output_path"] = os.path.join(config["output_path"] + f'_pnp_SD_{config["sd_version"]}', | |
# Path(config["data_path"]).stem, | |
# config["prompt"][:240], | |
# f'attn_{config["pnp_attn_t"]}_f_{config["pnp_f_t"]}', | |
# f'batch_size_{str(config["batch_size"])}', | |
# str(config["n_timesteps"]), | |
# ) | |
# os.makedirs(config["output_path"], exist_ok=True) | |
# print(config["data_path"]) | |
# assert os.path.exists(config["data_path"]), "Data path does not exist" | |
# with open(os.path.join(config["output_path"], "config.yaml"), "w") as f: | |
# yaml.dump(config, f) | |
# run(config) | |