Spaces:
Running
Running
Liangcd
commited on
Commit
•
e3feded
1
Parent(s):
d6e0b7c
[demo] refine app.py
Browse files- app.py +6 -53
- requirements.txt +2 -3
app.py
CHANGED
@@ -14,10 +14,7 @@
|
|
14 |
# limitations under the License.
|
15 |
|
16 |
import gradio as gr
|
17 |
-
import
|
18 |
-
import torchaudio.compliance.kaldi as kaldi
|
19 |
-
import torch
|
20 |
-
import onnxruntime as ort
|
21 |
from sklearn.metrics.pairwise import cosine_similarity
|
22 |
|
23 |
STYLE = """
|
@@ -49,53 +46,9 @@ OUTPUT_ERROR = (STYLE + """
|
|
49 |
</div>
|
50 |
""")
|
51 |
|
|
|
|
|
52 |
|
53 |
-
def compute_fbank(wav_path,
|
54 |
-
num_bel_bins=80,
|
55 |
-
frame_length=25,
|
56 |
-
frame_shift=10,
|
57 |
-
dither=0.0,
|
58 |
-
resample_rate=16000):
|
59 |
-
""" Extract fbank, simlilar to the one in wespeaker.dataset.processor,
|
60 |
-
While integrating the wave reading and CMN.
|
61 |
-
"""
|
62 |
-
waveform, sample_rate = torchaudio.load(wav_path)
|
63 |
-
# resample
|
64 |
-
if sample_rate != resample_rate:
|
65 |
-
waveform = torchaudio.transforms.Resample(
|
66 |
-
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
67 |
-
waveform = waveform * (1 << 15)
|
68 |
-
mat = kaldi.fbank(waveform,
|
69 |
-
num_mel_bins=num_bel_bins,
|
70 |
-
frame_length=frame_length,
|
71 |
-
frame_shift=frame_shift,
|
72 |
-
dither=dither,
|
73 |
-
sample_frequency=sample_rate,
|
74 |
-
window_type='hamming',
|
75 |
-
use_energy=False)
|
76 |
-
# CMN, without CVN
|
77 |
-
mat = mat - torch.mean(mat, dim=0)
|
78 |
-
return mat
|
79 |
-
|
80 |
-
|
81 |
-
class OnnxModel(object):
|
82 |
-
|
83 |
-
def __init__(self, model_path):
|
84 |
-
so = ort.SessionOptions()
|
85 |
-
so.inter_op_num_threads = 1
|
86 |
-
so.intra_op_num_threads = 1
|
87 |
-
self.session = ort.InferenceSession(model_path, sess_options=so)
|
88 |
-
|
89 |
-
def extract_embedding(self, wav_path):
|
90 |
-
feats = compute_fbank(wav_path)
|
91 |
-
feats = feats.unsqueeze(0).numpy()
|
92 |
-
|
93 |
-
embeddings = self.session.run(output_names=['embs'],
|
94 |
-
input_feed={'feats': feats})
|
95 |
-
return embeddings[0]
|
96 |
-
|
97 |
-
vox_model = OnnxModel('pre_model/voxceleb_resnet34.onnx')
|
98 |
-
cnc_model = OnnxModel('pre_model/cnceleb_resnet34.onnx')
|
99 |
|
100 |
def speaker_verification(audio_path1, audio_path2, lang='CN'):
|
101 |
if audio_path1 == None or audio_path2 == None:
|
@@ -108,13 +61,13 @@ def speaker_verification(audio_path1, audio_path2, lang='CN'):
|
|
108 |
else:
|
109 |
output = OUTPUT_ERROR.format('Please select a language')
|
110 |
return output
|
111 |
-
emb1 = model.
|
112 |
-
emb2 = model.
|
113 |
cos_score = cosine_similarity(emb1.reshape(1, -1), emb2.reshape(1,
|
114 |
-1))[0][0]
|
115 |
cos_score = (cos_score + 1) / 2.0
|
116 |
|
117 |
-
if cos_score >= 0.
|
118 |
output = OUTPUT_OK.format(cos_score * 100)
|
119 |
else:
|
120 |
output = OUTPUT_FAIL.format(cos_score * 100)
|
|
|
14 |
# limitations under the License.
|
15 |
|
16 |
import gradio as gr
|
17 |
+
import wespeakerruntime as wespeaker
|
|
|
|
|
|
|
18 |
from sklearn.metrics.pairwise import cosine_similarity
|
19 |
|
20 |
STYLE = """
|
|
|
46 |
</div>
|
47 |
""")
|
48 |
|
49 |
+
vox_model = wespeaker.Inference('pre_model/voxceleb_resnet34.onnx')
|
50 |
+
cnc_model = wespeaker.Inference('pre_model/cnceleb_resnet34.onnx')
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def speaker_verification(audio_path1, audio_path2, lang='CN'):
|
54 |
if audio_path1 == None or audio_path2 == None:
|
|
|
61 |
else:
|
62 |
output = OUTPUT_ERROR.format('Please select a language')
|
63 |
return output
|
64 |
+
emb1 = model.extract_embedding_wav(audio_path1)
|
65 |
+
emb2 = model.extract_embedding_wav(audio_path2)
|
66 |
cos_score = cosine_similarity(emb1.reshape(1, -1), emb2.reshape(1,
|
67 |
-1))[0][0]
|
68 |
cos_score = (cos_score + 1) / 2.0
|
69 |
|
70 |
+
if cos_score >= 0.70:
|
71 |
output = OUTPUT_OK.format(cos_score * 100)
|
72 |
else:
|
73 |
output = OUTPUT_FAIL.format(cos_score * 100)
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
onnxruntime==1.11.1
|
2 |
gradio
|
3 |
-
|
4 |
-
scikit-learn
|
|
|
|
|
1 |
gradio
|
2 |
+
wespeakerruntime
|
3 |
+
scikit-learn
|