File size: 10,669 Bytes
3f0529e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Contents of this file were adapted from the open source fairseq repository.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Dict, List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from esm.multihead_attention import MultiheadAttention
from torch import Tensor


class TransformerEncoderLayer(nn.Module):
    """Encoder layer block.
    `layernorm -> dropout -> add residual`

    Args:
        args (argparse.Namespace): parsed command-line arguments
    """

    def __init__(self, args):
        super().__init__()
        self.args = args
        self.embed_dim = args.encoder_embed_dim
        self.self_attn = self.build_self_attention(self.embed_dim, args)
        self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim)
        self.dropout_module = nn.Dropout(args.dropout)
        self.activation_fn = F.relu
        self.fc1 = self.build_fc1(
            self.embed_dim,
            args.encoder_ffn_embed_dim,
        )
        self.fc2 = self.build_fc2(
            args.encoder_ffn_embed_dim,
            self.embed_dim,
        )

        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def build_fc1(self, input_dim, output_dim):
        return nn.Linear(input_dim, output_dim)

    def build_fc2(self, input_dim, output_dim):
        return nn.Linear(input_dim, output_dim)

    def build_self_attention(self, embed_dim, args):
        return MultiheadAttention(
            embed_dim,
            args.encoder_attention_heads,
            dropout=args.attention_dropout,
            self_attention=True,
        )

    def residual_connection(self, x, residual):
        return residual + x

    def forward(
        self,
        x,
        encoder_padding_mask: Optional[Tensor],
        attn_mask: Optional[Tensor] = None,
    ):
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor): binary ByteTensor of shape
                `(batch, seq_len)` where padding elements are indicated by ``1``.
            attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`,
                where `tgt_len` is the length of output and `src_len` is the
                length of input, though here both are equal to `seq_len`.
                `attn_mask[tgt_i, src_j] = 1` means that when calculating the
                embedding for `tgt_i`, we exclude (mask out) `src_j`. This is
                useful for strided self-attention.

        Returns:
            encoded output of shape `(seq_len, batch, embed_dim)`
        """
        # anything in original attn_mask = 1, becomes -1e8
        # anything in original attn_mask = 0, becomes 0
        # Note that we cannot use -inf here, because at some edge cases,
        # the attention weight (before softmax) for some padded element in query
        # will become -inf, which results in NaN in model parameters
        if attn_mask is not None:
            attn_mask = attn_mask.masked_fill(
                attn_mask.to(torch.bool), -1e8 if x.dtype == torch.float32 else -1e4
            )

        residual = x
        x = self.self_attn_layer_norm(x)
        x, _ = self.self_attn(
            query=x,
            key=x,
            value=x,
            key_padding_mask=encoder_padding_mask,
            need_weights=False,
            attn_mask=attn_mask,
        )
        x = self.dropout_module(x)
        x = self.residual_connection(x, residual)

        residual = x
        x = self.final_layer_norm(x)
        x = self.activation_fn(self.fc1(x))
        x = self.fc2(x)
        x = self.dropout_module(x)
        x = self.residual_connection(x, residual)
        return x


class TransformerDecoderLayer(nn.Module):
    """Decoder layer block.
    `layernorm -> dropout -> add residual`

    Args:
        args (argparse.Namespace): parsed command-line arguments
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """

    def __init__(
        self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False
    ):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.dropout_module = nn.Dropout(args.dropout)

        self.self_attn = self.build_self_attention(
            self.embed_dim,
            args,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
        )
        self.nh = self.self_attn.num_heads
        self.head_dim = self.self_attn.head_dim

        self.activation_fn = F.relu

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = self.build_encoder_attention(self.embed_dim, args)
            self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)

        self.ffn_layernorm = (
            LayerNorm(args.decoder_ffn_embed_dim)
            if getattr(args, "scale_fc", False)
            else None
        )
        self.w_resid = (
            nn.Parameter(
                torch.ones(
                    self.embed_dim,
                ),
                requires_grad=True,
            )
            if getattr(args, "scale_resids", False)
            else None
        )

        self.fc1 = self.build_fc1(
            self.embed_dim,
            args.decoder_ffn_embed_dim,
        )
        self.fc2 = self.build_fc2(
            args.decoder_ffn_embed_dim,
            self.embed_dim,
        )

        self.final_layer_norm = nn.LayerNorm(self.embed_dim)
        self.need_attn = True

    def build_fc1(self, input_dim, output_dim):
        return nn.Linear(input_dim, output_dim)

    def build_fc2(self, input_dim, output_dim):
        return nn.Linear(input_dim, output_dim)

    def build_self_attention(
        self, embed_dim, args, add_bias_kv=False, add_zero_attn=False
    ):
        return MultiheadAttention(
            embed_dim,
            args.decoder_attention_heads,
            dropout=args.attention_dropout,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
            self_attention=True,
        )

    def build_encoder_attention(self, embed_dim, args):
        return MultiheadAttention(
            embed_dim,
            args.decoder_attention_heads,
            kdim=args.encoder_embed_dim,
            vdim=args.encoder_embed_dim,
            dropout=args.attention_dropout,
            encoder_decoder_attention=True,
        )

    def residual_connection(self, x, residual):
        return residual + x

    def forward(
        self,
        x,
        encoder_out: Optional[torch.Tensor] = None,
        encoder_padding_mask: Optional[torch.Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        prev_self_attn_state: Optional[List[torch.Tensor]] = None,
        prev_attn_state: Optional[List[torch.Tensor]] = None,
        self_attn_mask: Optional[torch.Tensor] = None,
        self_attn_padding_mask: Optional[torch.Tensor] = None,
        need_attn: bool = False,
        need_head_weights: bool = False,
    ):
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor, optional): binary
                ByteTensor of shape `(batch, src_len)` where padding
                elements are indicated by ``1``.
            need_attn (bool, optional): return attention weights
            need_head_weights (bool, optional): return attention weights
                for each head (default: return average over heads).

        Returns:
            encoded output of shape `(seq_len, batch, embed_dim)`
        """
        if need_head_weights:
            need_attn = True

        residual = x
        x = self.self_attn_layer_norm(x)
        if prev_self_attn_state is not None:
            prev_key, prev_value = prev_self_attn_state[:2]
            saved_state: Dict[str, Optional[Tensor]] = {
                "prev_key": prev_key,
                "prev_value": prev_value,
            }
            if len(prev_self_attn_state) >= 3:
                saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
            assert incremental_state is not None
            self.self_attn._set_input_buffer(incremental_state, saved_state)
        _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
        y = x

        x, attn = self.self_attn(
            query=x,
            key=y,
            value=y,
            key_padding_mask=self_attn_padding_mask,
            incremental_state=incremental_state,
            need_weights=False,
            attn_mask=self_attn_mask,
        )
        x = self.dropout_module(x)
        x = self.residual_connection(x, residual)

        if self.encoder_attn is not None and encoder_out is not None:
            residual = x
            x = self.encoder_attn_layer_norm(x)
            if prev_attn_state is not None:
                prev_key, prev_value = prev_attn_state[:2]
                saved_state: Dict[str, Optional[Tensor]] = {
                    "prev_key": prev_key,
                    "prev_value": prev_value,
                }
                if len(prev_attn_state) >= 3:
                    saved_state["prev_key_padding_mask"] = prev_attn_state[2]
                assert incremental_state is not None
                self.encoder_attn._set_input_buffer(incremental_state, saved_state)

            x, attn = self.encoder_attn(
                query=x,
                key=encoder_out,
                value=encoder_out,
                key_padding_mask=encoder_padding_mask,
                incremental_state=incremental_state,
                static_kv=True,
                need_weights=need_attn or (not self.training and self.need_attn),
                need_head_weights=need_head_weights,
            )
            x = self.dropout_module(x)
            x = self.residual_connection(x, residual)

        residual = x
        x = self.final_layer_norm(x)

        x = self.activation_fn(self.fc1(x))
        if self.ffn_layernorm is not None:
            x = self.ffn_layernorm(x)
        x = self.fc2(x)
        x = self.dropout_module(x)
        if self.w_resid is not None:
            residual = torch.mul(self.w_resid, residual)
        x = self.residual_connection(x, residual)
        return x, attn, None