File size: 8,529 Bytes
3f0529e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import torch
import torch.nn as nn


class RowSelfAttention(nn.Module):
    """Compute self-attention over rows of a 2D input."""

    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        max_tokens_per_msa: int = 2 ** 16,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        self.scaling = self.head_dim ** -0.5
        self.max_tokens_per_msa = max_tokens_per_msa
        self.attn_shape = "hnij"

        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)

        self.out_proj = nn.Linear(embed_dim, embed_dim)
        self.dropout_module = nn.Dropout(dropout)

    def align_scaling(self, q):
        num_rows = q.size(0)
        return self.scaling / math.sqrt(num_rows)

    def _batched_forward(
        self,
        x,
        self_attn_mask=None,
        self_attn_padding_mask=None,
    ):
        num_rows, num_cols, batch_size, embed_dim = x.size()
        max_rows = max(1, self.max_tokens_per_msa // num_cols)
        attns = 0
        scaling = self.align_scaling(x)
        for start in range(0, num_rows, max_rows):
            attn_weights = self.compute_attention_weights(
                x[start : start + max_rows],
                scaling,
                self_attn_mask=self_attn_mask,
                self_attn_padding_mask=self_attn_padding_mask[:, start : start + max_rows]
                if self_attn_padding_mask is not None
                else None,
            )
            attns += attn_weights
        attn_probs = attns.softmax(-1)
        attn_probs = self.dropout_module(attn_probs)

        outputs = []
        for start in range(0, num_rows, max_rows):
            output = self.compute_attention_update(x[start : start + max_rows], attn_probs)
            outputs.append(output)

        output = torch.cat(outputs, 0)
        return output, attn_probs

    def compute_attention_weights(
        self,
        x,
        scaling: float,
        self_attn_mask=None,
        self_attn_padding_mask=None,
    ):
        num_rows, num_cols, batch_size, embed_dim = x.size()
        q = self.q_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
        k = self.k_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
        q *= scaling
        if self_attn_padding_mask is not None:
            # Zero out any padded aligned positions - this is important since
            # we take a sum across the alignment axis.
            q *= 1 - self_attn_padding_mask.permute(1, 2, 0).unsqueeze(3).unsqueeze(4).to(q)

        attn_weights = torch.einsum(f"rinhd,rjnhd->{self.attn_shape}", q, k)

        if self_attn_mask is not None:
            raise NotImplementedError
            # Mask Size: [B x R x C], Weights Size: [H x B x C x C]

        if self_attn_padding_mask is not None:
            attn_weights = attn_weights.masked_fill(
                self_attn_padding_mask[:, 0].unsqueeze(0).unsqueeze(2),
                -10000,
            )

        return attn_weights

    def compute_attention_update(
        self,
        x,
        attn_probs,
    ):
        num_rows, num_cols, batch_size, embed_dim = x.size()
        v = self.v_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
        context = torch.einsum(f"{self.attn_shape},rjnhd->rinhd", attn_probs, v)
        context = context.contiguous().view(num_rows, num_cols, batch_size, embed_dim)
        output = self.out_proj(context)
        return output

    def forward(
        self,
        x,
        self_attn_mask=None,
        self_attn_padding_mask=None,
    ):
        num_rows, num_cols, batch_size, embed_dim = x.size()
        if (num_rows * num_cols > self.max_tokens_per_msa) and not torch.is_grad_enabled():
            return self._batched_forward(x, self_attn_mask, self_attn_padding_mask)
        else:
            scaling = self.align_scaling(x)
            attn_weights = self.compute_attention_weights(
                x, scaling, self_attn_mask, self_attn_padding_mask
            )
            attn_probs = attn_weights.softmax(-1)
            attn_probs = self.dropout_module(attn_probs)
            output = self.compute_attention_update(x, attn_probs)
            return output, attn_probs


class ColumnSelfAttention(nn.Module):
    """Compute self-attention over columns of a 2D input."""

    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        max_tokens_per_msa: int = 2 ** 16,
    ):
        super().__init__()

        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        self.scaling = self.head_dim ** -0.5
        self.max_tokens_per_msa = max_tokens_per_msa

        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)

        self.out_proj = nn.Linear(embed_dim, embed_dim)
        self.dropout_module = nn.Dropout(dropout)

    def _batched_forward(
        self,
        x,
        self_attn_mask=None,
        self_attn_padding_mask=None,
    ):
        num_rows, num_cols, batch_size, embed_dim = x.size()
        max_cols = max(1, self.max_tokens_per_msa // num_rows)
        outputs = []
        attns = []
        for start in range(0, num_cols, max_cols):
            output, attn = self(
                x[:, start : start + max_cols],
                self_attn_mask=self_attn_mask,
                self_attn_padding_mask=self_attn_padding_mask[:, :, start : start + max_cols]
                if self_attn_padding_mask is not None
                else None,
            )
            outputs.append(output)
            attns.append(attn)
        output = torch.cat(outputs, 1)
        attns = torch.cat(attns, 1)
        return output, attns

    def compute_attention_update(
        self,
        x,
        self_attn_mask=None,
        self_attn_padding_mask=None,
    ):
        num_rows, num_cols, batch_size, embed_dim = x.size()
        if num_rows == 1:
            # if there is only 1 position, this is equivalent and doesn't break with padding
            attn_probs = torch.ones(
                self.num_heads,
                num_cols,
                batch_size,
                num_rows,
                num_rows,
                device=x.device,
                dtype=x.dtype,
            )
            output = self.out_proj(self.v_proj(x))
        else:
            q = self.q_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
            k = self.k_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
            v = self.v_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
            q *= self.scaling

            attn_weights = torch.einsum("icnhd,jcnhd->hcnij", q, k)

            if self_attn_mask is not None:
                raise NotImplementedError
            if self_attn_padding_mask is not None:
                attn_weights = attn_weights.masked_fill(
                    self_attn_padding_mask.permute(2, 0, 1).unsqueeze(0).unsqueeze(3),
                    -10000,
                )

            attn_probs = attn_weights.softmax(-1)
            attn_probs = self.dropout_module(attn_probs)
            context = torch.einsum("hcnij,jcnhd->icnhd", attn_probs, v)
            context = context.contiguous().view(num_rows, num_cols, batch_size, embed_dim)
            output = self.out_proj(context)
        return output, attn_probs

    def forward(
        self,
        x,
        self_attn_mask=None,
        self_attn_padding_mask=None,
    ):
        num_rows, num_cols, batch_size, embed_dim = x.size()
        # if False and num_rows * num_cols > 2 ** 14 and not torch.is_grad_enabled():
        if (num_rows * num_cols) > self.max_tokens_per_msa and not torch.is_grad_enabled():
            return self._batched_forward(
                x,
                self_attn_mask,
                self_attn_padding_mask,
            )
        else:
            return self.compute_attention_update(x, self_attn_mask, self_attn_padding_mask)