|
|
|
|
|
|
|
|
|
import typing as T |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from torch import nn |
|
from openfold.np import residue_constants |
|
from openfold.np.protein import Protein as OFProtein |
|
from openfold.np.protein import to_pdb |
|
from openfold.utils.feats import atom14_to_atom37 |
|
|
|
|
|
def encode_sequence( |
|
seq: str, |
|
residue_index_offset: T.Optional[int] = 512, |
|
chain_linker: T.Optional[str] = "G" * 25, |
|
) -> T.Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
if chain_linker is None: |
|
chain_linker = "" |
|
if residue_index_offset is None: |
|
residue_index_offset = 0 |
|
|
|
chains = seq.split(":") |
|
seq = chain_linker.join(chains) |
|
|
|
unk_idx = residue_constants.restype_order_with_x["X"] |
|
encoded = torch.tensor( |
|
[residue_constants.restype_order_with_x.get(aa, unk_idx) for aa in seq] |
|
) |
|
residx = torch.arange(len(encoded)) |
|
|
|
if residue_index_offset > 0: |
|
start = 0 |
|
for i, chain in enumerate(chains): |
|
residx[start : start + len(chain) + len(chain_linker)] += ( |
|
i * residue_index_offset |
|
) |
|
start += len(chain) + len(chain_linker) |
|
|
|
linker_mask = torch.ones_like(encoded, dtype=torch.float32) |
|
chain_index = [] |
|
offset = 0 |
|
for i, chain in enumerate(chains): |
|
if i > 0: |
|
chain_index.extend([i - 1] * len(chain_linker)) |
|
chain_index.extend([i] * len(chain)) |
|
offset += len(chain) |
|
linker_mask[offset : offset + len(chain_linker)] = 0 |
|
offset += len(chain_linker) |
|
|
|
chain_index = torch.tensor(chain_index, dtype=torch.int64) |
|
|
|
return encoded, residx, linker_mask, chain_index |
|
|
|
|
|
def batch_encode_sequences( |
|
sequences: T.Sequence[str], |
|
residue_index_offset: T.Optional[int] = 512, |
|
chain_linker: T.Optional[str] = "G" * 25, |
|
) -> T.Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
|
aatype_list = [] |
|
residx_list = [] |
|
linker_mask_list = [] |
|
chain_index_list = [] |
|
for seq in sequences: |
|
aatype_seq, residx_seq, linker_mask_seq, chain_index_seq = encode_sequence( |
|
seq, |
|
residue_index_offset=residue_index_offset, |
|
chain_linker=chain_linker, |
|
) |
|
aatype_list.append(aatype_seq) |
|
residx_list.append(residx_seq) |
|
linker_mask_list.append(linker_mask_seq) |
|
chain_index_list.append(chain_index_seq) |
|
|
|
aatype = collate_dense_tensors(aatype_list) |
|
mask = collate_dense_tensors( |
|
[aatype.new_ones(len(aatype_seq)) for aatype_seq in aatype_list] |
|
) |
|
residx = collate_dense_tensors(residx_list) |
|
linker_mask = collate_dense_tensors(linker_mask_list) |
|
chain_index_list = collate_dense_tensors(chain_index_list, -1) |
|
|
|
return aatype, mask, residx, linker_mask, chain_index_list |
|
|
|
|
|
def output_to_pdb(output: T.Dict) -> T.List[str]: |
|
"""Returns the pbd (file) string from the model given the model output.""" |
|
|
|
|
|
final_atom_positions = atom14_to_atom37(output["positions"][-1], output) |
|
output = {k: v.to("cpu").numpy() for k, v in output.items()} |
|
final_atom_positions = final_atom_positions.cpu().numpy() |
|
final_atom_mask = output["atom37_atom_exists"] |
|
pdbs = [] |
|
for i in range(output["aatype"].shape[0]): |
|
aa = output["aatype"][i] |
|
pred_pos = final_atom_positions[i] |
|
mask = final_atom_mask[i] |
|
resid = output["residue_index"][i] + 1 |
|
pred = OFProtein( |
|
aatype=aa, |
|
atom_positions=pred_pos, |
|
atom_mask=mask, |
|
residue_index=resid, |
|
b_factors=output["plddt"][i], |
|
chain_index=output["chain_index"][i] if "chain_index" in output else None, |
|
) |
|
pdbs.append(to_pdb(pred)) |
|
return pdbs |
|
|
|
|
|
def collate_dense_tensors( |
|
samples: T.List[torch.Tensor], pad_v: float = 0 |
|
) -> torch.Tensor: |
|
""" |
|
Takes a list of tensors with the following dimensions: |
|
[(d_11, ..., d_1K), |
|
(d_21, ..., d_2K), |
|
..., |
|
(d_N1, ..., d_NK)] |
|
and stack + pads them into a single tensor of: |
|
(N, max_i=1,N { d_i1 }, ..., max_i=1,N {diK}) |
|
""" |
|
if len(samples) == 0: |
|
return torch.Tensor() |
|
if len(set(x.dim() for x in samples)) != 1: |
|
raise RuntimeError( |
|
f"Samples has varying dimensions: {[x.dim() for x in samples]}" |
|
) |
|
(device,) = tuple(set(x.device for x in samples)) |
|
max_shape = [max(lst) for lst in zip(*[x.shape for x in samples])] |
|
result = torch.empty( |
|
len(samples), *max_shape, dtype=samples[0].dtype, device=device |
|
) |
|
result.fill_(pad_v) |
|
for i in range(len(samples)): |
|
result_i = result[i] |
|
t = samples[i] |
|
result_i[tuple(slice(0, k) for k in t.shape)] = t |
|
return result |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, embed_dim, num_heads, head_width, gated=False): |
|
super().__init__() |
|
assert embed_dim == num_heads * head_width |
|
|
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_width = head_width |
|
|
|
self.proj = nn.Linear(embed_dim, embed_dim * 3, bias=False) |
|
self.o_proj = nn.Linear(embed_dim, embed_dim, bias=True) |
|
self.gated = gated |
|
if gated: |
|
self.g_proj = nn.Linear(embed_dim, embed_dim) |
|
torch.nn.init.zeros_(self.g_proj.weight) |
|
torch.nn.init.ones_(self.g_proj.bias) |
|
|
|
self.rescale_factor = self.head_width**-0.5 |
|
|
|
torch.nn.init.zeros_(self.o_proj.bias) |
|
|
|
def forward(self, x, mask=None, bias=None, indices=None): |
|
""" |
|
Basic self attention with optional mask and external pairwise bias. |
|
To handle sequences of different lengths, use mask. |
|
|
|
Inputs: |
|
x: batch of input sequneces (.. x L x C) |
|
mask: batch of boolean masks where 1=valid, 0=padding position (.. x L_k). optional. |
|
bias: batch of scalar pairwise attention biases (.. x Lq x Lk x num_heads). optional. |
|
|
|
Outputs: |
|
sequence projection (B x L x embed_dim), attention maps (B x L x L x num_heads) |
|
""" |
|
|
|
t = rearrange(self.proj(x), "... l (h c) -> ... h l c", h=self.num_heads) |
|
q, k, v = t.chunk(3, dim=-1) |
|
|
|
q = self.rescale_factor * q |
|
a = torch.einsum("...qc,...kc->...qk", q, k) |
|
|
|
|
|
if bias is not None: |
|
a = a + rearrange(bias, "... lq lk h -> ... h lq lk") |
|
|
|
|
|
if mask is not None: |
|
mask = repeat( |
|
mask, "... lk -> ... h lq lk", h=self.num_heads, lq=q.shape[-2] |
|
) |
|
a = a.masked_fill(mask == False, -np.inf) |
|
|
|
a = F.softmax(a, dim=-1) |
|
|
|
y = torch.einsum("...hqk,...hkc->...qhc", a, v) |
|
y = rearrange(y, "... h c -> ... (h c)", h=self.num_heads) |
|
|
|
if self.gated: |
|
y = self.g_proj(x).sigmoid() * y |
|
y = self.o_proj(y) |
|
|
|
return y, rearrange(a, "... lq lk h -> ... h lq lk") |
|
|
|
|
|
class Dropout(nn.Module): |
|
""" |
|
Implementation of dropout with the ability to share the dropout mask |
|
along a particular dimension. |
|
""" |
|
|
|
def __init__(self, r: float, batch_dim: T.Union[int, T.List[int]]): |
|
super(Dropout, self).__init__() |
|
|
|
self.r = r |
|
if type(batch_dim) == int: |
|
batch_dim = [batch_dim] |
|
self.batch_dim = batch_dim |
|
self.dropout = nn.Dropout(self.r) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
shape = list(x.shape) |
|
if self.batch_dim is not None: |
|
for bd in self.batch_dim: |
|
shape[bd] = 1 |
|
return x * self.dropout(x.new_ones(shape)) |
|
|
|
|
|
class SequenceToPair(nn.Module): |
|
def __init__(self, sequence_state_dim, inner_dim, pairwise_state_dim): |
|
super().__init__() |
|
|
|
self.layernorm = nn.LayerNorm(sequence_state_dim) |
|
self.proj = nn.Linear(sequence_state_dim, inner_dim * 2, bias=True) |
|
self.o_proj = nn.Linear(2 * inner_dim, pairwise_state_dim, bias=True) |
|
|
|
torch.nn.init.zeros_(self.proj.bias) |
|
torch.nn.init.zeros_(self.o_proj.bias) |
|
|
|
def forward(self, sequence_state): |
|
""" |
|
Inputs: |
|
sequence_state: B x L x sequence_state_dim |
|
|
|
Output: |
|
pairwise_state: B x L x L x pairwise_state_dim |
|
|
|
Intermediate state: |
|
B x L x L x 2*inner_dim |
|
""" |
|
|
|
assert len(sequence_state.shape) == 3 |
|
|
|
s = self.layernorm(sequence_state) |
|
s = self.proj(s) |
|
q, k = s.chunk(2, dim=-1) |
|
|
|
prod = q[:, None, :, :] * k[:, :, None, :] |
|
diff = q[:, None, :, :] - k[:, :, None, :] |
|
|
|
x = torch.cat([prod, diff], dim=-1) |
|
x = self.o_proj(x) |
|
|
|
return x |
|
|
|
|
|
class PairToSequence(nn.Module): |
|
def __init__(self, pairwise_state_dim, num_heads): |
|
super().__init__() |
|
|
|
self.layernorm = nn.LayerNorm(pairwise_state_dim) |
|
self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False) |
|
|
|
def forward(self, pairwise_state): |
|
""" |
|
Inputs: |
|
pairwise_state: B x L x L x pairwise_state_dim |
|
|
|
Output: |
|
pairwise_bias: B x L x L x num_heads |
|
""" |
|
assert len(pairwise_state.shape) == 4 |
|
z = self.layernorm(pairwise_state) |
|
pairwise_bias = self.linear(z) |
|
return pairwise_bias |
|
|
|
|
|
class ResidueMLP(nn.Module): |
|
def __init__(self, embed_dim, inner_dim, norm=nn.LayerNorm, dropout=0): |
|
super().__init__() |
|
|
|
self.mlp = nn.Sequential( |
|
norm(embed_dim), |
|
nn.Linear(embed_dim, inner_dim), |
|
nn.ReLU(), |
|
nn.Linear(inner_dim, embed_dim), |
|
nn.Dropout(dropout), |
|
) |
|
|
|
def forward(self, x): |
|
return x + self.mlp(x) |
|
|