|
"""
|
|
Copyright (c) 2022, salesforce.com, inc.
|
|
All rights reserved.
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
|
|
import time
|
|
import random
|
|
import torch
|
|
from lavis.datasets.data_utils import move_to_cuda
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
|
class MultiIterLoader:
|
|
"""
|
|
A simple wrapper for iterating over multiple iterators.
|
|
|
|
Args:
|
|
loaders (List[Loader]): List of Iterator loaders.
|
|
ratios (List[float]): List of ratios to sample from each loader. If None, all loaders are sampled uniformly.
|
|
"""
|
|
|
|
def __init__(self, loaders, ratios=None):
|
|
|
|
for loader in loaders:
|
|
assert hasattr(
|
|
loader, "__next__"
|
|
), "Loader {} has no __next__ method.".format(loader)
|
|
|
|
if ratios is None:
|
|
ratios = [1.0] * len(loaders)
|
|
else:
|
|
assert len(ratios) == len(loaders)
|
|
ratios = [float(ratio) / sum(ratios) for ratio in ratios]
|
|
|
|
self.loaders = loaders
|
|
self.ratios = ratios
|
|
|
|
def __next__(self):
|
|
|
|
loader_idx = random.choices(range(len(self.loaders)), self.ratios, k=1)[0]
|
|
return next(self.loaders[loader_idx])
|
|
|
|
|
|
class PrefetchLoader(object):
|
|
"""
|
|
Modified from https://github.com/ChenRocks/UNITER.
|
|
|
|
overlap compute and cuda data transfer
|
|
(copied and then modified from nvidia apex)
|
|
"""
|
|
|
|
def __init__(self, loader):
|
|
self.loader = loader
|
|
self.stream = torch.cuda.Stream()
|
|
|
|
def __iter__(self):
|
|
loader_it = iter(self.loader)
|
|
self.preload(loader_it)
|
|
batch = self.next(loader_it)
|
|
while batch is not None:
|
|
is_tuple = isinstance(batch, tuple)
|
|
if is_tuple:
|
|
task, batch = batch
|
|
|
|
if is_tuple:
|
|
yield task, batch
|
|
else:
|
|
yield batch
|
|
batch = self.next(loader_it)
|
|
|
|
def __len__(self):
|
|
return len(self.loader)
|
|
|
|
def preload(self, it):
|
|
try:
|
|
self.batch = next(it)
|
|
except StopIteration:
|
|
self.batch = None
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.cuda.stream(self.stream):
|
|
self.batch = move_to_cuda(self.batch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def next(self, it):
|
|
torch.cuda.current_stream().wait_stream(self.stream)
|
|
batch = self.batch
|
|
if batch is not None:
|
|
record_cuda_stream(batch)
|
|
self.preload(it)
|
|
return batch
|
|
|
|
def __getattr__(self, name):
|
|
method = self.loader.__getattribute__(name)
|
|
return method
|
|
|
|
|
|
def record_cuda_stream(batch):
|
|
if isinstance(batch, torch.Tensor):
|
|
batch.record_stream(torch.cuda.current_stream())
|
|
elif isinstance(batch, list) or isinstance(batch, tuple):
|
|
for t in batch:
|
|
record_cuda_stream(t)
|
|
elif isinstance(batch, dict):
|
|
for t in batch.values():
|
|
record_cuda_stream(t)
|
|
else:
|
|
pass
|
|
|
|
|
|
class IterLoader:
|
|
"""
|
|
A wrapper to convert DataLoader as an infinite iterator.
|
|
|
|
Modified from:
|
|
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
|
|
"""
|
|
|
|
def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
|
|
self._dataloader = dataloader
|
|
self.iter_loader = iter(self._dataloader)
|
|
self._use_distributed = use_distributed
|
|
self._epoch = 0
|
|
|
|
@property
|
|
def epoch(self) -> int:
|
|
return self._epoch
|
|
|
|
def __next__(self):
|
|
try:
|
|
data = next(self.iter_loader)
|
|
except StopIteration:
|
|
self._epoch += 1
|
|
if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
|
|
self._dataloader.sampler.set_epoch(self._epoch)
|
|
time.sleep(2)
|
|
self.iter_loader = iter(self._dataloader)
|
|
data = next(self.iter_loader)
|
|
|
|
return data
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __len__(self):
|
|
return len(self._dataloader)
|
|
|