Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,53 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import pandas as pd
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from lavis.models.protein_models.protein_function_opt import Blip2ProteinMistral
|
7 |
-
from lavis.models.base_model import FAPMConfig
|
8 |
-
import spaces
|
9 |
-
import gradio as gr
|
10 |
-
|
11 |
-
|
12 |
-
# Load the model
|
13 |
-
model = Blip2ProteinMistral(config=FAPMConfig(), esm_size='3b')
|
14 |
-
model.load_checkpoint("model/checkpoint_mf2.pth")
|
15 |
-
model.to('cuda')
|
16 |
-
|
17 |
-
|
18 |
-
@spaces.GPU
|
19 |
-
def generate_caption(protein, prompt):
|
20 |
-
# Process the image and the prompt
|
21 |
-
with open('data/fasta/example.fasta', 'w') as f:
|
22 |
-
f.write('>{}\n'.format("protein_name"))
|
23 |
-
f.write('{}\n'.format(protein.strip()))
|
24 |
-
os.system("python esm_scripts/extract.py esm2_t36_3B_UR50D data/fasta/example.fasta data/emb_esm2_3b --repr_layers 36 --truncation_seq_length 1024 --include per_tok")
|
25 |
-
esm_emb = torch.load("data/emb_esm2_3b/protein_name.pt")['representations'][36]
|
26 |
-
esm_emb = F.pad(esm_emb.t(), (0, 1024 - len(esm_emb))).t().to('cuda')
|
27 |
-
samples = {'name': ['test_protein'],
|
28 |
-
'image': torch.unsqueeze(esm_emb, dim=0),
|
29 |
-
'text_input': ['none'],
|
30 |
-
'prompt': [prompt]}
|
31 |
-
# Generate the output
|
32 |
-
prediction = model.generate(samples, length_penalty=0., num_beams=15, num_captions=10, temperature=1., repetition_penalty=1.0)
|
33 |
-
|
34 |
-
return prediction
|
35 |
-
|
36 |
-
# Define the FAPM interface
|
37 |
-
description = """Quick demonstration of the FAPM model for protein function prediction. Upload an protein sequence to generate a function description. Modify the Prompt to provide the taxonomy information.
|
38 |
-
|
39 |
-
The model used in this app is available at [Hugging Face Model Hub](https://huggingface.co/wenkai/FAPM) and the source code can be found on [GitHub](https://github.com/xiangwenkai/FAPM/tree/main)."""
|
40 |
-
|
41 |
-
iface = gr.Interface(
|
42 |
-
fn=generate_caption,
|
43 |
-
inputs=[gr.Textbox(type="
|
44 |
-
outputs=gr.Textbox(label="Generated description"),
|
45 |
-
description=description
|
46 |
-
)
|
47 |
-
|
48 |
-
# Launch the interface
|
49 |
-
iface.launch()
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import pandas as pd
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from lavis.models.protein_models.protein_function_opt import Blip2ProteinMistral
|
7 |
+
from lavis.models.base_model import FAPMConfig
|
8 |
+
import spaces
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
|
12 |
+
# Load the model
|
13 |
+
model = Blip2ProteinMistral(config=FAPMConfig(), esm_size='3b')
|
14 |
+
model.load_checkpoint("model/checkpoint_mf2.pth")
|
15 |
+
model.to('cuda')
|
16 |
+
|
17 |
+
|
18 |
+
@spaces.GPU
|
19 |
+
def generate_caption(protein, prompt):
|
20 |
+
# Process the image and the prompt
|
21 |
+
with open('data/fasta/example.fasta', 'w') as f:
|
22 |
+
f.write('>{}\n'.format("protein_name"))
|
23 |
+
f.write('{}\n'.format(protein.strip()))
|
24 |
+
os.system("python esm_scripts/extract.py esm2_t36_3B_UR50D data/fasta/example.fasta data/emb_esm2_3b --repr_layers 36 --truncation_seq_length 1024 --include per_tok")
|
25 |
+
esm_emb = torch.load("data/emb_esm2_3b/protein_name.pt")['representations'][36]
|
26 |
+
esm_emb = F.pad(esm_emb.t(), (0, 1024 - len(esm_emb))).t().to('cuda')
|
27 |
+
samples = {'name': ['test_protein'],
|
28 |
+
'image': torch.unsqueeze(esm_emb, dim=0),
|
29 |
+
'text_input': ['none'],
|
30 |
+
'prompt': [prompt]}
|
31 |
+
# Generate the output
|
32 |
+
prediction = model.generate(samples, length_penalty=0., num_beams=15, num_captions=10, temperature=1., repetition_penalty=1.0)
|
33 |
+
|
34 |
+
return prediction
|
35 |
+
|
36 |
+
# Define the FAPM interface
|
37 |
+
description = """Quick demonstration of the FAPM model for protein function prediction. Upload an protein sequence to generate a function description. Modify the Prompt to provide the taxonomy information.
|
38 |
+
|
39 |
+
The model used in this app is available at [Hugging Face Model Hub](https://huggingface.co/wenkai/FAPM) and the source code can be found on [GitHub](https://github.com/xiangwenkai/FAPM/tree/main)."""
|
40 |
+
|
41 |
+
iface = gr.Interface(
|
42 |
+
fn=generate_caption,
|
43 |
+
inputs=[gr.Textbox(type="text", label="Upload sequence"), gr.Textbox(type="text", label="Prompt")],
|
44 |
+
outputs=gr.Textbox(label="Generated description"),
|
45 |
+
description=description
|
46 |
+
)
|
47 |
+
|
48 |
+
# Launch the interface
|
49 |
+
iface.launch()
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|