import pandas as pd import re import random import Levenshtein import numpy as np import difflib # from torchmetrics.text import BLEUScore import time from multiprocessing import Pool, Queue, Process import matplotlib.pyplot as plt from data.evaluate_data.utils import Ontology # bleu = BLEUScore(n_gram=1) def fuzzy_match(texts): text_dict = {} for context in texts: if context not in choices: # txt_dict[txt] = process.extractOne(txt, choices)[0] text_dict[context] = difflib.get_close_matches(context, choices, n=1, cutoff=0.)[0] return text_dict def get_sim(text, label): all_s = [] for x in label: s = 0 for y in text: temp = Levenshtein.ratio(x, y) if temp > s: s = temp all_s.append(s) all_s = [round(i, 3) for i in all_s] # bs = [bleu(x, [label]) for x in text] return all_s def txt_map(x, txt_dict): if type(x) == str: x = eval(x) x_ = [] for i in x: if i == '': continue if i in txt_dict: x_.append(txt_dict[i]) else: x_.append(i) return x_ def go_map(t): if t in GO_dict: return GO_dict[t] else: print(t) def get_term(df): from collections import Counter cnt = Counter() for i, row in enumerate(df.itertuples()): for term in row.prop_annotations: cnt[term] += 1 terms = list(cnt.keys()) # remove top for top_term in ['GO:0005575', 'GO:0003674', 'GO:0008150']: if top_term in terms: terms.remove(top_term) terms_df = pd.DataFrame({'gos': terms}) terms_df.to_pickle(f'/cluster/home/wenkai/deepgozero/data/blip2/terms.pkl') if __name__ == "__main__": go = Ontology(f'/cluster/home/wenkai/deepgozero/data/data/go.obo', with_rels=True) go_des = pd.read_csv('/cluster/home/wenkai/LAVIS/data/go_descriptions_new.txt', sep='|', header=None) go_des.columns = ['GO', 'function'] go_des = go_des[go_des['function'].notnull()] go_des['function'] = go_des['function'].apply(lambda x: x.lower().strip()) go_des['GO'] = go_des['GO'].apply(lambda x: re.sub('_', ':', x)) GO_dict = dict(zip(go_des['function'], go_des['GO'])) data = pd.read_csv('/cluster/home/wenkai/LAVIS/output/output_case.txt', sep='|', header=None) data.columns = ['protein', 'pred', 'label'] data['label'] = data['label'].apply(lambda x: x.lower()) data['pred'] = data['pred'].apply(lambda x: re.sub('', '', x)) data['label_list'] = data['label'].apply(lambda x: [i.strip() for i in x.split(';')]) data['pred_list'] = data['pred'].apply(lambda x: [i.strip() for i in x.split(';')]) test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/test.csv', sep='|') test = test.drop_duplicates() test['function'] = test['function'].apply(lambda x: x.lower().strip()) test['function'] = test['function'].apply(lambda x: [i.strip() for i in x.split(';')]) test['GO_label'] = test['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')]) test_dict = dict() for x, y in zip(test['function'], test['GO_label']): temp = dict(zip(x, y)) test_dict.update(temp) GO_dict.update(test_dict) choices = list(test_dict.keys()) ### 预测的文本如果不在GO标签词中,则算作最相似的GO标签 ''' print("找到与预测文本最相似的GO标签......") t0 = time.time() txt_dict = {} all_txt = [] for txt in data['pred_list']: if type(txt) == str: all_txt.extend(eval(txt)) else: all_txt.extend(txt) all_txt = list(set(all_txt)) n = len(all_txt) thread = 10 size = int(n/thread) inds = list(range(0, n, size)) inds.append(n) all_txt_sep = [all_txt[i: min(i+size, n)] for i in inds[:-1]] with Pool(processes=thread) as pool: result = pool.map(fuzzy_match, all_txt_sep) pool.close() pool.join() for d in result: txt_dict.update(d) # for txt in all_txt[:10]: # fuzzy_match(txt) data['pred_list'] = data['pred_list'].apply(lambda x: txt_map(x, txt_dict)) data['pred_list'] = data['pred_list'].apply(lambda x: list(set(x))) print("fuzzy matching time: {}".format(time.time() - t0)) print("calculating f1 score ......") data['label_list_go'] = data['label_list'].apply(lambda x: [go_map(i) for i in x]) data['pred_list_go'] = data['pred_list'].apply(lambda x: [go_map(i) for i in x]) ''' # 准备case测试数据:blip2预测的Go标签作为feature,label加入祖先后作为预测的Y prepare_ancestors = True if prepare_ancestors: print("准备加入祖先后的数据......") def prop(df): prop_annotations = [] for i, row in df.iterrows(): # Propagate annotations annot_set = set() annots = row['GO_label'] for go_id in annots: annot_set |= go.get_anchestors(go_id) annots = list(annot_set) prop_annotations.append(annots) df['prop_annotations'] = prop_annotations return df def pred_text_to_go(df): df['pred'] = df['pred'].apply(lambda x: re.sub('', '', x)) df['pred_list'] = df['pred'].apply(lambda x: [i.strip() for i in x.split(';')]) ### 预测的文本如果不在GO标签词中,则算作最相似的GO标签 t0 = time.time() txt_dict = {} all_txt = [] for txt in df['pred_list']: if type(txt) == str: all_txt.extend(eval(txt)) else: all_txt.extend(txt) all_txt = list(set(all_txt)) if '' in all_txt: all_txt.remove('') n = len(all_txt) thread = 10 size = int(n / thread) inds = list(range(0, n, size)) inds.append(n) all_txt_sep = [all_txt[i: min(i + size, n)] for i in inds[:-1]] with Pool(processes=thread) as pool: result = pool.map(fuzzy_match, all_txt_sep) pool.close() pool.join() for d in result: txt_dict.update(d) # for txt in all_txt[:10]: # fuzzy_match(txt) df['pred_list'] = df['pred_list'].apply(lambda x: txt_map(x, txt_dict)) df['pred_list'] = df['pred_list'].apply(lambda x: list(set(x))) print("fuzzy matching time: {}".format(time.time() - t0)) df['pred_list_go'] = df['pred_list'].apply(lambda x: [go_map(i) for i in x]) return df test_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/output_case.txt', sep='|', header=None) test_pred.columns = ['protein', 'pred', 'GO_label'] test_pred['GO_label'] = test_pred['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')]) test_pred = prop(test_pred) test_pred = pred_text_to_go(test_pred) for cat in ['mf', 'bp', 'cc']: test_pred.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/test_case.pkl'.format(cat))