File size: 20,412 Bytes
1d409a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
from transformers import CLIPTokenizer
import ldm_patched.modules.ops
import torch
import traceback
import zipfile
from . import model_management
import contextlib
import ldm_patched.modules.clip_model
import json
def gen_empty_tokens(special_tokens, length):
start_token = special_tokens.get("start", None)
end_token = special_tokens.get("end", None)
pad_token = special_tokens.get("pad")
output = []
if start_token is not None:
output.append(start_token)
if end_token is not None:
output.append(end_token)
output += [pad_token] * (length - len(output))
return output
class ClipTokenWeightEncoder:
def encode_token_weights(self, token_weight_pairs):
to_encode = list()
max_token_len = 0
has_weights = False
for x in token_weight_pairs:
tokens = list(map(lambda a: a[0], x))
max_token_len = max(len(tokens), max_token_len)
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
to_encode.append(tokens)
sections = len(to_encode)
if has_weights or sections == 0:
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
out, pooled = self.encode(to_encode)
if pooled is not None:
first_pooled = pooled[0:1].to(model_management.intermediate_device())
else:
first_pooled = pooled
output = []
for k in range(0, sections):
z = out[k:k+1]
if has_weights:
z_empty = out[-1]
for i in range(len(z)):
for j in range(len(z[i])):
weight = token_weight_pairs[k][j][1]
if weight != 1.0:
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
output.append(z)
if (len(output) == 0):
return out[-1:].to(model_management.intermediate_device()), first_pooled
return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = [
"last",
"pooled",
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=ldm_patched.modules.clip_model.CLIPTextModel,
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
with open(textmodel_json_config) as f:
config = json.load(f)
self.transformer = model_class(config, dtype, device, ldm_patched.modules.ops.manual_cast)
self.num_layers = self.transformer.num_layers
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = None
self.special_tokens = special_tokens
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.enable_attention_masks = False
self.layer_norm_hidden_state = layer_norm_hidden_state
if layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < self.num_layers
self.clip_layer(layer_idx)
self.layer_default = (self.layer, self.layer_idx)
def freeze(self):
self.transformer = self.transformer.eval()
#self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def clip_layer(self, layer_idx):
if abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
self.layer = "hidden"
self.layer_idx = layer_idx
def reset_clip_layer(self):
self.layer = self.layer_default[0]
self.layer_idx = self.layer_default[1]
def set_up_textual_embeddings(self, tokens, current_embeds):
out_tokens = []
next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
embedding_weights = []
for x in tokens:
tokens_temp = []
for y in x:
if isinstance(y, int):
if y == token_dict_size: #EOS token
y = -1
tokens_temp += [y]
else:
if y.shape[0] == current_embeds.weight.shape[1]:
embedding_weights += [y]
tokens_temp += [next_new_token]
next_new_token += 1
else:
print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
while len(tokens_temp) < len(x):
tokens_temp += [self.special_tokens["pad"]]
out_tokens += [tokens_temp]
n = token_dict_size
if len(embedding_weights) > 0:
new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
for x in embedding_weights:
new_embedding.weight[n] = x
n += 1
new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
self.transformer.set_input_embeddings(new_embedding)
processed_tokens = []
for x in out_tokens:
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one
return processed_tokens
def forward(self, tokens):
backup_embeds = self.transformer.get_input_embeddings()
device = backup_embeds.weight.device
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
tokens = torch.LongTensor(tokens).to(device)
attention_mask = None
if self.enable_attention_masks:
attention_mask = torch.zeros_like(tokens)
max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
for x in range(attention_mask.shape[0]):
for y in range(attention_mask.shape[1]):
attention_mask[x, y] = 1
if tokens[x, y] == max_token:
break
outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last":
z = outputs[0]
else:
z = outputs[1]
if outputs[2] is not None:
pooled_output = outputs[2].float()
else:
pooled_output = None
if self.text_projection is not None and pooled_output is not None:
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
return z.float(), pooled_output
def encode(self, tokens):
return self(tokens)
def load_sd(self, sd):
if "text_projection" in sd:
self.text_projection[:] = sd.pop("text_projection")
if "text_projection.weight" in sd:
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
return self.transformer.load_state_dict(sd, strict=False)
def parse_parentheses(string):
result = []
current_item = ""
nesting_level = 0
for char in string:
if char == "(":
if nesting_level == 0:
if current_item:
result.append(current_item)
current_item = "("
else:
current_item = "("
else:
current_item += char
nesting_level += 1
elif char == ")":
nesting_level -= 1
if nesting_level == 0:
result.append(current_item + ")")
current_item = ""
else:
current_item += char
else:
current_item += char
if current_item:
result.append(current_item)
return result
def token_weights(string, current_weight):
a = parse_parentheses(string)
out = []
for x in a:
weight = current_weight
if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
x = x[1:-1]
xx = x.rfind(":")
weight *= 1.1
if xx > 0:
try:
weight = float(x[xx+1:])
x = x[:xx]
except:
pass
out += token_weights(x, weight)
else:
out += [(x, current_weight)]
return out
def escape_important(text):
text = text.replace("\\)", "\0\1")
text = text.replace("\\(", "\0\2")
return text
def unescape_important(text):
text = text.replace("\0\1", ")")
text = text.replace("\0\2", "(")
return text
def safe_load_embed_zip(embed_path):
with zipfile.ZipFile(embed_path) as myzip:
names = list(filter(lambda a: "data/" in a, myzip.namelist()))
names.reverse()
for n in names:
with myzip.open(n) as myfile:
data = myfile.read()
number = len(data) // 4
length_embed = 1024 #sd2.x
if number < 768:
continue
if number % 768 == 0:
length_embed = 768 #sd1.x
num_embeds = number // length_embed
embed = torch.frombuffer(data, dtype=torch.float)
out = embed.reshape((num_embeds, length_embed)).clone()
del embed
return out
def expand_directory_list(directories):
dirs = set()
for x in directories:
dirs.add(x)
for root, subdir, file in os.walk(x, followlinks=True):
dirs.add(root)
return list(dirs)
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory]
embedding_directory = expand_directory_list(embedding_directory)
valid_file = None
for embed_dir in embedding_directory:
embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
embed_dir = os.path.abspath(embed_dir)
try:
if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
continue
except:
continue
if not os.path.isfile(embed_path):
extensions = ['.safetensors', '.pt', '.bin']
for x in extensions:
t = embed_path + x
if os.path.isfile(t):
valid_file = t
break
else:
valid_file = embed_path
if valid_file is not None:
break
if valid_file is None:
return None
embed_path = valid_file
embed_out = None
try:
if embed_path.lower().endswith(".safetensors"):
import safetensors.torch
embed = safetensors.torch.load_file(embed_path, device="cpu")
else:
if 'weights_only' in torch.load.__code__.co_varnames:
try:
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
except:
embed_out = safe_load_embed_zip(embed_path)
else:
embed = torch.load(embed_path, map_location="cpu")
except Exception as e:
print(traceback.format_exc())
print()
print("error loading embedding, skipping loading:", embedding_name)
return None
if embed_out is None:
if 'string_to_param' in embed:
values = embed['string_to_param'].values()
embed_out = next(iter(values))
elif isinstance(embed, list):
out_list = []
for x in range(len(embed)):
for k in embed[x]:
t = embed[x][k]
if t.shape[-1] != embedding_size:
continue
out_list.append(t.reshape(-1, t.shape[-1]))
embed_out = torch.cat(out_list, dim=0)
elif embed_key is not None and embed_key in embed:
embed_out = embed[embed_key]
else:
values = embed.values()
embed_out = next(iter(values))
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
self.max_length = max_length
empty = self.tokenizer('')["input_ids"]
if has_start_token:
self.tokens_start = 1
self.start_token = empty[0]
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = None
self.end_token = empty[0]
self.pad_with_end = pad_with_end
self.pad_to_max_length = pad_to_max_length
vocab = self.tokenizer.get_vocab()
self.inv_vocab = {v: k for k, v in vocab.items()}
self.embedding_directory = embedding_directory
self.max_word_length = 8
self.embedding_identifier = "embedding:"
self.embedding_size = embedding_size
self.embedding_key = embedding_key
def _try_get_embedding(self, embedding_name:str):
'''
Takes a potential embedding name and tries to retrieve it.
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
'''
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
if embed is None:
stripped = embedding_name.strip(',')
if len(stripped) < len(embedding_name):
embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
return (embed, embedding_name[len(stripped):])
return (embed, "")
def tokenize_with_weights(self, text:str, return_word_ids=False):
'''
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP
'''
if self.pad_with_end:
pad_token = self.end_token
else:
pad_token = 0
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
#tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
#if we find an embedding, deal with the embedding
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
embedding_name = word[len(self.embedding_identifier):].strip('\n')
embed, leftover = self._try_get_embedding(embedding_name)
if embed is None:
print(f"warning, embedding:{embedding_name} does not exist, ignoring")
else:
if len(embed.shape) == 1:
tokens.append([(embed, weight)])
else:
tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
#if we accidentally have leftover text, continue parsing using leftover, else move on to next word
if leftover != "":
word = leftover
else:
continue
#parse word
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
#reshape token array to CLIP input size
batched_tokens = []
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
for i, t_group in enumerate(tokens):
#determine if we're going to try and keep the tokens in a single batch
is_large = len(t_group) >= self.max_word_length
while len(t_group) > 0:
if len(t_group) + len(batch) > self.max_length - 1:
remaining_length = self.max_length - len(batch) - 1
#break word in two and add end token
if is_large:
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
#add end token and pad
else:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
#start new batch
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
else:
batch.extend([(t,w,i+1) for t,w in t_group])
t_group = []
#fill last batch
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
return batched_tokens
def untokenize(self, token_weight_pair):
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
class SD1Tokenizer:
def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
self.clip_name = clip_name
self.clip = "clip_{}".format(self.clip_name)
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
return getattr(self, self.clip).untokenize(token_weight_pair)
class SD1ClipModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
super().__init__()
self.clip_name = clip_name
self.clip = "clip_{}".format(self.clip_name)
setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
def clip_layer(self, layer_idx):
getattr(self, self.clip).clip_layer(layer_idx)
def reset_clip_layer(self):
getattr(self, self.clip).reset_clip_layer()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs = token_weight_pairs[self.clip_name]
out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
return out, pooled
def load_sd(self, sd):
return getattr(self, self.clip).load_sd(sd)
|