naked / extras /interrogate.py
Wezy Easy
New GIT
1d409a9
raw
history blame
2.44 kB
import os
import torch
import ldm_patched.modules.model_management as model_management
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from modules.model_loader import load_file_from_url
from modules.config import path_clip_vision
from ldm_patched.modules.model_patcher import ModelPatcher
from extras.BLIP.models.blip import blip_decoder
blip_image_eval_size = 384
blip_repo_root = os.path.join(os.path.dirname(__file__), 'BLIP')
class Interrogator:
def __init__(self):
self.blip_model = None
self.load_device = torch.device('cpu')
self.offload_device = torch.device('cpu')
self.dtype = torch.float32
@torch.no_grad()
@torch.inference_mode()
def interrogate(self, img_rgb):
if self.blip_model is None:
filename = load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/model_base_caption_capfilt_large.pth',
model_dir=path_clip_vision,
file_name='model_base_caption_capfilt_large.pth',
)
model = blip_decoder(pretrained=filename, image_size=blip_image_eval_size, vit='base',
med_config=os.path.join(blip_repo_root, "configs", "med_config.json"))
model.eval()
self.load_device = model_management.text_encoder_device()
self.offload_device = model_management.text_encoder_offload_device()
self.dtype = torch.float32
model.to(self.offload_device)
if model_management.should_use_fp16(device=self.load_device):
model.half()
self.dtype = torch.float16
self.blip_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device)
model_management.load_model_gpu(self.blip_model)
gpu_image = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])(img_rgb).unsqueeze(0).to(device=self.load_device, dtype=self.dtype)
caption = self.blip_model.model.generate(gpu_image, sample=True, num_beams=1, max_length=75)[0]
return caption
default_interrogator = Interrogator().interrogate