|
import torch |
|
import numpy as np |
|
from ldm_patched.ldm.modules.diffusionmodules.util import make_beta_schedule |
|
import math |
|
|
|
class EPS: |
|
def calculate_input(self, sigma, noise): |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) |
|
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 |
|
|
|
def calculate_denoised(self, sigma, model_output, model_input): |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) |
|
return model_input - model_output * sigma |
|
|
|
|
|
class V_PREDICTION(EPS): |
|
def calculate_denoised(self, sigma, model_output, model_input): |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) |
|
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 |
|
|
|
|
|
class ModelSamplingDiscrete(torch.nn.Module): |
|
def __init__(self, model_config=None): |
|
super().__init__() |
|
|
|
if model_config is not None: |
|
sampling_settings = model_config.sampling_settings |
|
else: |
|
sampling_settings = {} |
|
|
|
beta_schedule = sampling_settings.get("beta_schedule", "linear") |
|
linear_start = sampling_settings.get("linear_start", 0.00085) |
|
linear_end = sampling_settings.get("linear_end", 0.012) |
|
|
|
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3) |
|
self.sigma_data = 1.0 |
|
|
|
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
if given_betas is not None: |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) |
|
alphas = 1. - betas |
|
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32) |
|
|
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
|
|
|
|
|
|
|
|
|
|
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 |
|
self.set_sigmas(sigmas) |
|
|
|
def set_sigmas(self, sigmas): |
|
self.register_buffer('sigmas', sigmas) |
|
self.register_buffer('log_sigmas', sigmas.log()) |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
log_sigma = sigma.log() |
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] |
|
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) |
|
|
|
def sigma(self, timestep): |
|
t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1)) |
|
low_idx = t.floor().long() |
|
high_idx = t.ceil().long() |
|
w = t.frac() |
|
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] |
|
return log_sigma.exp().to(timestep.device) |
|
|
|
def percent_to_sigma(self, percent): |
|
if percent <= 0.0: |
|
return 999999999.9 |
|
if percent >= 1.0: |
|
return 0.0 |
|
percent = 1.0 - percent |
|
return self.sigma(torch.tensor(percent * 999.0)).item() |
|
|
|
|
|
class ModelSamplingContinuousEDM(torch.nn.Module): |
|
def __init__(self, model_config=None): |
|
super().__init__() |
|
self.sigma_data = 1.0 |
|
|
|
if model_config is not None: |
|
sampling_settings = model_config.sampling_settings |
|
else: |
|
sampling_settings = {} |
|
|
|
sigma_min = sampling_settings.get("sigma_min", 0.002) |
|
sigma_max = sampling_settings.get("sigma_max", 120.0) |
|
self.set_sigma_range(sigma_min, sigma_max) |
|
|
|
def set_sigma_range(self, sigma_min, sigma_max): |
|
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp() |
|
|
|
self.register_buffer('sigmas', sigmas) |
|
self.register_buffer('log_sigmas', sigmas.log()) |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
return 0.25 * sigma.log() |
|
|
|
def sigma(self, timestep): |
|
return (timestep / 0.25).exp() |
|
|
|
def percent_to_sigma(self, percent): |
|
if percent <= 0.0: |
|
return 999999999.9 |
|
if percent >= 1.0: |
|
return 0.0 |
|
percent = 1.0 - percent |
|
|
|
log_sigma_min = math.log(self.sigma_min) |
|
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min) |
|
|