Wezy Easy
New GIT
1d409a9
raw
history blame
4.15 kB
import torch
from contextlib import contextmanager
import ldm_patched.modules.model_management
def cast_bias_weight(s, input):
bias = None
non_blocking = ldm_patched.modules.model_management.device_supports_non_blocking(input.device)
if s.bias is not None:
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
return weight, bias
class disable_weight_init:
class Linear(torch.nn.Linear):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv2d(torch.nn.Conv2d):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv3d(torch.nn.Conv3d):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class GroupNorm(torch.nn.GroupNorm):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class LayerNorm(torch.nn.LayerNorm):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@classmethod
def conv_nd(s, dims, *args, **kwargs):
if dims == 2:
return s.Conv2d(*args, **kwargs)
elif dims == 3:
return s.Conv3d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
class manual_cast(disable_weight_init):
class Linear(disable_weight_init.Linear):
ldm_patched_cast_weights = True
class Conv2d(disable_weight_init.Conv2d):
ldm_patched_cast_weights = True
class Conv3d(disable_weight_init.Conv3d):
ldm_patched_cast_weights = True
class GroupNorm(disable_weight_init.GroupNorm):
ldm_patched_cast_weights = True
class LayerNorm(disable_weight_init.LayerNorm):
ldm_patched_cast_weights = True