naked / modules /inpaint_worker.py
Wezy Easy
New GIT
1d409a9
raw
history blame
6.67 kB
import torch
import numpy as np
from PIL import Image, ImageFilter
from modules.util import resample_image, set_image_shape_ceil, get_image_shape_ceil
from modules.upscaler import perform_upscale
inpaint_head_model = None
class InpaintHead(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu'))
def __call__(self, x):
x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate")
return torch.nn.functional.conv2d(input=x, weight=self.head)
current_task = None
def box_blur(x, k):
x = Image.fromarray(x)
x = x.filter(ImageFilter.BoxBlur(k))
return np.array(x)
def max33(x):
x = Image.fromarray(x)
x = x.filter(ImageFilter.MaxFilter(3))
return np.array(x)
def morphological_open(x):
x_int32 = np.zeros_like(x).astype(np.int32)
x_int32[x > 127] = 256
for _ in range(32):
maxed = max33(x_int32) - 8
x_int32 = np.maximum(maxed, x_int32)
return x_int32.clip(0, 255).astype(np.uint8)
def up255(x, t=0):
y = np.zeros_like(x).astype(np.uint8)
y[x > t] = 255
return y
def imsave(x, path):
x = Image.fromarray(x)
x.save(path)
def regulate_abcd(x, a, b, c, d):
H, W = x.shape[:2]
if a < 0:
a = 0
if a > H:
a = H
if b < 0:
b = 0
if b > H:
b = H
if c < 0:
c = 0
if c > W:
c = W
if d < 0:
d = 0
if d > W:
d = W
return int(a), int(b), int(c), int(d)
def compute_initial_abcd(x):
indices = np.where(x)
a = np.min(indices[0])
b = np.max(indices[0])
c = np.min(indices[1])
d = np.max(indices[1])
abp = (b + a) // 2
abm = (b - a) // 2
cdp = (d + c) // 2
cdm = (d - c) // 2
l = int(max(abm, cdm) * 1.15)
a = abp - l
b = abp + l + 1
c = cdp - l
d = cdp + l + 1
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def solve_abcd(x, a, b, c, d, k):
k = float(k)
assert 0.0 <= k <= 1.0
H, W = x.shape[:2]
if k == 1.0:
return 0, H, 0, W
while True:
if b - a >= H * k and d - c >= W * k:
break
add_h = (b - a) < (d - c)
add_w = not add_h
if b - a == H:
add_w = True
if d - c == W:
add_h = True
if add_h:
a -= 1
b += 1
if add_w:
c -= 1
d += 1
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def fooocus_fill(image, mask):
current_image = image.copy()
raw_image = image.copy()
area = np.where(mask < 127)
store = raw_image[area]
for k, repeats in [(512, 2), (256, 2), (128, 4), (64, 4), (33, 8), (15, 8), (5, 16), (3, 16)]:
for _ in range(repeats):
current_image = box_blur(current_image, k)
current_image[area] = store
return current_image
class InpaintWorker:
def __init__(self, image, mask, use_fill=True, k=0.618):
a, b, c, d = compute_initial_abcd(mask > 0)
a, b, c, d = solve_abcd(mask, a, b, c, d, k=k)
# interested area
self.interested_area = (a, b, c, d)
self.interested_mask = mask[a:b, c:d]
self.interested_image = image[a:b, c:d]
# super resolution
if get_image_shape_ceil(self.interested_image) < 1024:
self.interested_image = perform_upscale(self.interested_image)
# resize to make images ready for diffusion
self.interested_image = set_image_shape_ceil(self.interested_image, 1024)
self.interested_fill = self.interested_image.copy()
H, W, C = self.interested_image.shape
# process mask
self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127)
# compute filling
if use_fill:
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)
# soft pixels
self.mask = morphological_open(mask)
self.image = image
# ending
self.latent = None
self.latent_after_swap = None
self.swapped = False
self.latent_mask = None
self.inpaint_head_feature = None
return
def load_latent(self, latent_fill, latent_mask, latent_swap=None):
self.latent = latent_fill
self.latent_mask = latent_mask
self.latent_after_swap = latent_swap
return
def patch(self, inpaint_head_model_path, inpaint_latent, inpaint_latent_mask, model):
global inpaint_head_model
if inpaint_head_model is None:
inpaint_head_model = InpaintHead()
sd = torch.load(inpaint_head_model_path, map_location='cpu')
inpaint_head_model.load_state_dict(sd)
feed = torch.cat([
inpaint_latent_mask,
model.model.process_latent_in(inpaint_latent)
], dim=1)
inpaint_head_model.to(device=feed.device, dtype=feed.dtype)
inpaint_head_feature = inpaint_head_model(feed)
def input_block_patch(h, transformer_options):
if transformer_options["block"][1] == 0:
h = h + inpaint_head_feature.to(h)
return h
m = model.clone()
m.set_model_input_block_patch(input_block_patch)
return m
def swap(self):
if self.swapped:
return
if self.latent is None:
return
if self.latent_after_swap is None:
return
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
self.swapped = True
return
def unswap(self):
if not self.swapped:
return
if self.latent is None:
return
if self.latent_after_swap is None:
return
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
self.swapped = False
return
def color_correction(self, img):
fg = img.astype(np.float32)
bg = self.image.copy().astype(np.float32)
w = self.mask[:, :, None].astype(np.float32) / 255.0
y = fg * w + bg * (1 - w)
return y.clip(0, 255).astype(np.uint8)
def post_process(self, img):
a, b, c, d = self.interested_area
content = resample_image(img, d - c, b - a)
result = self.image.copy()
result[a:b, c:d] = content
result = self.color_correction(result)
return result
def visualize_mask_processing(self):
return [self.interested_fill, self.interested_mask, self.interested_image]