|
import torch |
|
import numpy as np |
|
|
|
from PIL import Image, ImageFilter |
|
from modules.util import resample_image, set_image_shape_ceil, get_image_shape_ceil |
|
from modules.upscaler import perform_upscale |
|
|
|
|
|
inpaint_head_model = None |
|
|
|
|
|
class InpaintHead(torch.nn.Module): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu')) |
|
|
|
def __call__(self, x): |
|
x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate") |
|
return torch.nn.functional.conv2d(input=x, weight=self.head) |
|
|
|
|
|
current_task = None |
|
|
|
|
|
def box_blur(x, k): |
|
x = Image.fromarray(x) |
|
x = x.filter(ImageFilter.BoxBlur(k)) |
|
return np.array(x) |
|
|
|
|
|
def max33(x): |
|
x = Image.fromarray(x) |
|
x = x.filter(ImageFilter.MaxFilter(3)) |
|
return np.array(x) |
|
|
|
|
|
def morphological_open(x): |
|
x_int32 = np.zeros_like(x).astype(np.int32) |
|
x_int32[x > 127] = 256 |
|
for _ in range(32): |
|
maxed = max33(x_int32) - 8 |
|
x_int32 = np.maximum(maxed, x_int32) |
|
return x_int32.clip(0, 255).astype(np.uint8) |
|
|
|
|
|
def up255(x, t=0): |
|
y = np.zeros_like(x).astype(np.uint8) |
|
y[x > t] = 255 |
|
return y |
|
|
|
|
|
def imsave(x, path): |
|
x = Image.fromarray(x) |
|
x.save(path) |
|
|
|
|
|
def regulate_abcd(x, a, b, c, d): |
|
H, W = x.shape[:2] |
|
if a < 0: |
|
a = 0 |
|
if a > H: |
|
a = H |
|
if b < 0: |
|
b = 0 |
|
if b > H: |
|
b = H |
|
if c < 0: |
|
c = 0 |
|
if c > W: |
|
c = W |
|
if d < 0: |
|
d = 0 |
|
if d > W: |
|
d = W |
|
return int(a), int(b), int(c), int(d) |
|
|
|
|
|
def compute_initial_abcd(x): |
|
indices = np.where(x) |
|
a = np.min(indices[0]) |
|
b = np.max(indices[0]) |
|
c = np.min(indices[1]) |
|
d = np.max(indices[1]) |
|
abp = (b + a) // 2 |
|
abm = (b - a) // 2 |
|
cdp = (d + c) // 2 |
|
cdm = (d - c) // 2 |
|
l = int(max(abm, cdm) * 1.15) |
|
a = abp - l |
|
b = abp + l + 1 |
|
c = cdp - l |
|
d = cdp + l + 1 |
|
a, b, c, d = regulate_abcd(x, a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def solve_abcd(x, a, b, c, d, k): |
|
k = float(k) |
|
assert 0.0 <= k <= 1.0 |
|
|
|
H, W = x.shape[:2] |
|
if k == 1.0: |
|
return 0, H, 0, W |
|
while True: |
|
if b - a >= H * k and d - c >= W * k: |
|
break |
|
|
|
add_h = (b - a) < (d - c) |
|
add_w = not add_h |
|
|
|
if b - a == H: |
|
add_w = True |
|
|
|
if d - c == W: |
|
add_h = True |
|
|
|
if add_h: |
|
a -= 1 |
|
b += 1 |
|
|
|
if add_w: |
|
c -= 1 |
|
d += 1 |
|
|
|
a, b, c, d = regulate_abcd(x, a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def fooocus_fill(image, mask): |
|
current_image = image.copy() |
|
raw_image = image.copy() |
|
area = np.where(mask < 127) |
|
store = raw_image[area] |
|
|
|
for k, repeats in [(512, 2), (256, 2), (128, 4), (64, 4), (33, 8), (15, 8), (5, 16), (3, 16)]: |
|
for _ in range(repeats): |
|
current_image = box_blur(current_image, k) |
|
current_image[area] = store |
|
|
|
return current_image |
|
|
|
|
|
class InpaintWorker: |
|
def __init__(self, image, mask, use_fill=True, k=0.618): |
|
a, b, c, d = compute_initial_abcd(mask > 0) |
|
a, b, c, d = solve_abcd(mask, a, b, c, d, k=k) |
|
|
|
|
|
self.interested_area = (a, b, c, d) |
|
self.interested_mask = mask[a:b, c:d] |
|
self.interested_image = image[a:b, c:d] |
|
|
|
|
|
if get_image_shape_ceil(self.interested_image) < 1024: |
|
self.interested_image = perform_upscale(self.interested_image) |
|
|
|
|
|
self.interested_image = set_image_shape_ceil(self.interested_image, 1024) |
|
self.interested_fill = self.interested_image.copy() |
|
H, W, C = self.interested_image.shape |
|
|
|
|
|
self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127) |
|
|
|
|
|
if use_fill: |
|
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask) |
|
|
|
|
|
self.mask = morphological_open(mask) |
|
self.image = image |
|
|
|
|
|
self.latent = None |
|
self.latent_after_swap = None |
|
self.swapped = False |
|
self.latent_mask = None |
|
self.inpaint_head_feature = None |
|
return |
|
|
|
def load_latent(self, latent_fill, latent_mask, latent_swap=None): |
|
self.latent = latent_fill |
|
self.latent_mask = latent_mask |
|
self.latent_after_swap = latent_swap |
|
return |
|
|
|
def patch(self, inpaint_head_model_path, inpaint_latent, inpaint_latent_mask, model): |
|
global inpaint_head_model |
|
|
|
if inpaint_head_model is None: |
|
inpaint_head_model = InpaintHead() |
|
sd = torch.load(inpaint_head_model_path, map_location='cpu') |
|
inpaint_head_model.load_state_dict(sd) |
|
|
|
feed = torch.cat([ |
|
inpaint_latent_mask, |
|
model.model.process_latent_in(inpaint_latent) |
|
], dim=1) |
|
|
|
inpaint_head_model.to(device=feed.device, dtype=feed.dtype) |
|
inpaint_head_feature = inpaint_head_model(feed) |
|
|
|
def input_block_patch(h, transformer_options): |
|
if transformer_options["block"][1] == 0: |
|
h = h + inpaint_head_feature.to(h) |
|
return h |
|
|
|
m = model.clone() |
|
m.set_model_input_block_patch(input_block_patch) |
|
return m |
|
|
|
def swap(self): |
|
if self.swapped: |
|
return |
|
|
|
if self.latent is None: |
|
return |
|
|
|
if self.latent_after_swap is None: |
|
return |
|
|
|
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent |
|
self.swapped = True |
|
return |
|
|
|
def unswap(self): |
|
if not self.swapped: |
|
return |
|
|
|
if self.latent is None: |
|
return |
|
|
|
if self.latent_after_swap is None: |
|
return |
|
|
|
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent |
|
self.swapped = False |
|
return |
|
|
|
def color_correction(self, img): |
|
fg = img.astype(np.float32) |
|
bg = self.image.copy().astype(np.float32) |
|
w = self.mask[:, :, None].astype(np.float32) / 255.0 |
|
y = fg * w + bg * (1 - w) |
|
return y.clip(0, 255).astype(np.uint8) |
|
|
|
def post_process(self, img): |
|
a, b, c, d = self.interested_area |
|
content = resample_image(img, d - c, b - a) |
|
result = self.image.copy() |
|
result[a:b, c:d] = content |
|
result = self.color_correction(result) |
|
return result |
|
|
|
def visualize_mask_processing(self): |
|
return [self.interested_fill, self.interested_mask, self.interested_image] |
|
|
|
|