|
import os |
|
import torch |
|
import modules.core as core |
|
|
|
from ldm_patched.pfn.architecture.RRDB import RRDBNet as ESRGAN |
|
from ldm_patched.contrib.external_upscale_model import ImageUpscaleWithModel |
|
from collections import OrderedDict |
|
from modules.config import path_upscale_models |
|
|
|
model_filename = os.path.join(path_upscale_models, 'fooocus_upscaler_s409985e5.bin') |
|
opImageUpscaleWithModel = ImageUpscaleWithModel() |
|
model = None |
|
|
|
|
|
def perform_upscale(img): |
|
global model |
|
|
|
print(f'Upscaling image with shape {str(img.shape)} ...') |
|
|
|
if model is None: |
|
sd = torch.load(model_filename) |
|
sdo = OrderedDict() |
|
for k, v in sd.items(): |
|
sdo[k.replace('residual_block_', 'RDB')] = v |
|
del sd |
|
model = ESRGAN(sdo) |
|
model.cpu() |
|
model.eval() |
|
|
|
img = core.numpy_to_pytorch(img) |
|
img = opImageUpscaleWithModel.upscale(model, img)[0] |
|
img = core.pytorch_to_numpy(img)[0] |
|
|
|
return img |
|
|