|
|
|
|
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.nn import init |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
|
|
@torch.no_grad() |
|
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): |
|
"""Initialize network weights. |
|
Args: |
|
module_list (list[nn.Module] | nn.Module): Modules to be initialized. |
|
scale (float): Scale initialized weights, especially for residual |
|
blocks. Default: 1. |
|
bias_fill (float): The value to fill bias. Default: 0 |
|
kwargs (dict): Other arguments for initialization function. |
|
""" |
|
if not isinstance(module_list, list): |
|
module_list = [module_list] |
|
for module in module_list: |
|
for m in module.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
init.kaiming_normal_(m.weight, **kwargs) |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.fill_(bias_fill) |
|
elif isinstance(m, nn.Linear): |
|
init.kaiming_normal_(m.weight, **kwargs) |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.fill_(bias_fill) |
|
elif isinstance(m, _BatchNorm): |
|
init.constant_(m.weight, 1) |
|
if m.bias is not None: |
|
m.bias.data.fill_(bias_fill) |
|
|
|
|
|
class NormStyleCode(nn.Module): |
|
def forward(self, x): |
|
"""Normalize the style codes. |
|
Args: |
|
x (Tensor): Style codes with shape (b, c). |
|
Returns: |
|
Tensor: Normalized tensor. |
|
""" |
|
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) |
|
|
|
|
|
class ModulatedConv2d(nn.Module): |
|
"""Modulated Conv2d used in StyleGAN2. |
|
There is no bias in ModulatedConv2d. |
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
kernel_size (int): Size of the convolving kernel. |
|
num_style_feat (int): Channel number of style features. |
|
demodulate (bool): Whether to demodulate in the conv layer. Default: True. |
|
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. |
|
eps (float): A value added to the denominator for numerical stability. Default: 1e-8. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
num_style_feat, |
|
demodulate=True, |
|
sample_mode=None, |
|
eps=1e-8, |
|
): |
|
super(ModulatedConv2d, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.demodulate = demodulate |
|
self.sample_mode = sample_mode |
|
self.eps = eps |
|
|
|
|
|
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True) |
|
|
|
default_init_weights( |
|
self.modulation, |
|
scale=1, |
|
bias_fill=1, |
|
a=0, |
|
mode="fan_in", |
|
nonlinearity="linear", |
|
) |
|
|
|
self.weight = nn.Parameter( |
|
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) |
|
/ math.sqrt(in_channels * kernel_size**2) |
|
) |
|
self.padding = kernel_size // 2 |
|
|
|
def forward(self, x, style): |
|
"""Forward function. |
|
Args: |
|
x (Tensor): Tensor with shape (b, c, h, w). |
|
style (Tensor): Tensor with shape (b, num_style_feat). |
|
Returns: |
|
Tensor: Modulated tensor after convolution. |
|
""" |
|
b, c, h, w = x.shape |
|
|
|
style = self.modulation(style).view(b, 1, c, 1, 1) |
|
|
|
weight = self.weight * style |
|
|
|
if self.demodulate: |
|
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) |
|
weight = weight * demod.view(b, self.out_channels, 1, 1, 1) |
|
|
|
weight = weight.view( |
|
b * self.out_channels, c, self.kernel_size, self.kernel_size |
|
) |
|
|
|
|
|
if self.sample_mode == "upsample": |
|
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False) |
|
elif self.sample_mode == "downsample": |
|
x = F.interpolate(x, scale_factor=0.5, mode="bilinear", align_corners=False) |
|
|
|
b, c, h, w = x.shape |
|
x = x.view(1, b * c, h, w) |
|
|
|
out = F.conv2d(x, weight, padding=self.padding, groups=b) |
|
out = out.view(b, self.out_channels, *out.shape[2:4]) |
|
|
|
return out |
|
|
|
def __repr__(self): |
|
return ( |
|
f"{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, " |
|
f"kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})" |
|
) |
|
|
|
|
|
class StyleConv(nn.Module): |
|
"""Style conv used in StyleGAN2. |
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
kernel_size (int): Size of the convolving kernel. |
|
num_style_feat (int): Channel number of style features. |
|
demodulate (bool): Whether demodulate in the conv layer. Default: True. |
|
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
num_style_feat, |
|
demodulate=True, |
|
sample_mode=None, |
|
): |
|
super(StyleConv, self).__init__() |
|
self.modulated_conv = ModulatedConv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
num_style_feat, |
|
demodulate=demodulate, |
|
sample_mode=sample_mode, |
|
) |
|
self.weight = nn.Parameter(torch.zeros(1)) |
|
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1)) |
|
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
|
|
def forward(self, x, style, noise=None): |
|
|
|
out = self.modulated_conv(x, style) * 2**0.5 |
|
|
|
if noise is None: |
|
b, _, h, w = out.shape |
|
noise = out.new_empty(b, 1, h, w).normal_() |
|
out = out + self.weight * noise |
|
|
|
out = out + self.bias |
|
|
|
out = self.activate(out) |
|
return out |
|
|
|
|
|
class ToRGB(nn.Module): |
|
"""To RGB (image space) from features. |
|
Args: |
|
in_channels (int): Channel number of input. |
|
num_style_feat (int): Channel number of style features. |
|
upsample (bool): Whether to upsample. Default: True. |
|
""" |
|
|
|
def __init__(self, in_channels, num_style_feat, upsample=True): |
|
super(ToRGB, self).__init__() |
|
self.upsample = upsample |
|
self.modulated_conv = ModulatedConv2d( |
|
in_channels, |
|
3, |
|
kernel_size=1, |
|
num_style_feat=num_style_feat, |
|
demodulate=False, |
|
sample_mode=None, |
|
) |
|
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) |
|
|
|
def forward(self, x, style, skip=None): |
|
"""Forward function. |
|
Args: |
|
x (Tensor): Feature tensor with shape (b, c, h, w). |
|
style (Tensor): Tensor with shape (b, num_style_feat). |
|
skip (Tensor): Base/skip tensor. Default: None. |
|
Returns: |
|
Tensor: RGB images. |
|
""" |
|
out = self.modulated_conv(x, style) |
|
out = out + self.bias |
|
if skip is not None: |
|
if self.upsample: |
|
skip = F.interpolate( |
|
skip, scale_factor=2, mode="bilinear", align_corners=False |
|
) |
|
out = out + skip |
|
return out |
|
|
|
|
|
class ConstantInput(nn.Module): |
|
"""Constant input. |
|
Args: |
|
num_channel (int): Channel number of constant input. |
|
size (int): Spatial size of constant input. |
|
""" |
|
|
|
def __init__(self, num_channel, size): |
|
super(ConstantInput, self).__init__() |
|
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) |
|
|
|
def forward(self, batch): |
|
out = self.weight.repeat(batch, 1, 1, 1) |
|
return out |
|
|
|
|
|
class StyleGAN2GeneratorClean(nn.Module): |
|
"""Clean version of StyleGAN2 Generator. |
|
Args: |
|
out_size (int): The spatial size of outputs. |
|
num_style_feat (int): Channel number of style features. Default: 512. |
|
num_mlp (int): Layer number of MLP style layers. Default: 8. |
|
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. |
|
narrow (float): Narrow ratio for channels. Default: 1.0. |
|
""" |
|
|
|
def __init__( |
|
self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1 |
|
): |
|
super(StyleGAN2GeneratorClean, self).__init__() |
|
|
|
self.num_style_feat = num_style_feat |
|
style_mlp_layers = [NormStyleCode()] |
|
for i in range(num_mlp): |
|
style_mlp_layers.extend( |
|
[ |
|
nn.Linear(num_style_feat, num_style_feat, bias=True), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
] |
|
) |
|
self.style_mlp = nn.Sequential(*style_mlp_layers) |
|
|
|
default_init_weights( |
|
self.style_mlp, |
|
scale=1, |
|
bias_fill=0, |
|
a=0.2, |
|
mode="fan_in", |
|
nonlinearity="leaky_relu", |
|
) |
|
|
|
|
|
channels = { |
|
"4": int(512 * narrow), |
|
"8": int(512 * narrow), |
|
"16": int(512 * narrow), |
|
"32": int(512 * narrow), |
|
"64": int(256 * channel_multiplier * narrow), |
|
"128": int(128 * channel_multiplier * narrow), |
|
"256": int(64 * channel_multiplier * narrow), |
|
"512": int(32 * channel_multiplier * narrow), |
|
"1024": int(16 * channel_multiplier * narrow), |
|
} |
|
self.channels = channels |
|
|
|
self.constant_input = ConstantInput(channels["4"], size=4) |
|
self.style_conv1 = StyleConv( |
|
channels["4"], |
|
channels["4"], |
|
kernel_size=3, |
|
num_style_feat=num_style_feat, |
|
demodulate=True, |
|
sample_mode=None, |
|
) |
|
self.to_rgb1 = ToRGB(channels["4"], num_style_feat, upsample=False) |
|
|
|
self.log_size = int(math.log(out_size, 2)) |
|
self.num_layers = (self.log_size - 2) * 2 + 1 |
|
self.num_latent = self.log_size * 2 - 2 |
|
|
|
self.style_convs = nn.ModuleList() |
|
self.to_rgbs = nn.ModuleList() |
|
self.noises = nn.Module() |
|
|
|
in_channels = channels["4"] |
|
|
|
for layer_idx in range(self.num_layers): |
|
resolution = 2 ** ((layer_idx + 5) // 2) |
|
shape = [1, 1, resolution, resolution] |
|
self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape)) |
|
|
|
for i in range(3, self.log_size + 1): |
|
out_channels = channels[f"{2**i}"] |
|
self.style_convs.append( |
|
StyleConv( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
num_style_feat=num_style_feat, |
|
demodulate=True, |
|
sample_mode="upsample", |
|
) |
|
) |
|
self.style_convs.append( |
|
StyleConv( |
|
out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
num_style_feat=num_style_feat, |
|
demodulate=True, |
|
sample_mode=None, |
|
) |
|
) |
|
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True)) |
|
in_channels = out_channels |
|
|
|
def make_noise(self): |
|
"""Make noise for noise injection.""" |
|
device = self.constant_input.weight.device |
|
noises = [torch.randn(1, 1, 4, 4, device=device)] |
|
|
|
for i in range(3, self.log_size + 1): |
|
for _ in range(2): |
|
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) |
|
|
|
return noises |
|
|
|
def get_latent(self, x): |
|
return self.style_mlp(x) |
|
|
|
def mean_latent(self, num_latent): |
|
latent_in = torch.randn( |
|
num_latent, self.num_style_feat, device=self.constant_input.weight.device |
|
) |
|
latent = self.style_mlp(latent_in).mean(0, keepdim=True) |
|
return latent |
|
|
|
def forward( |
|
self, |
|
styles, |
|
input_is_latent=False, |
|
noise=None, |
|
randomize_noise=True, |
|
truncation=1, |
|
truncation_latent=None, |
|
inject_index=None, |
|
return_latents=False, |
|
): |
|
"""Forward function for StyleGAN2GeneratorClean. |
|
Args: |
|
styles (list[Tensor]): Sample codes of styles. |
|
input_is_latent (bool): Whether input is latent style. Default: False. |
|
noise (Tensor | None): Input noise or None. Default: None. |
|
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. |
|
truncation (float): The truncation ratio. Default: 1. |
|
truncation_latent (Tensor | None): The truncation latent tensor. Default: None. |
|
inject_index (int | None): The injection index for mixing noise. Default: None. |
|
return_latents (bool): Whether to return style latents. Default: False. |
|
""" |
|
|
|
if not input_is_latent: |
|
styles = [self.style_mlp(s) for s in styles] |
|
|
|
if noise is None: |
|
if randomize_noise: |
|
noise = [None] * self.num_layers |
|
else: |
|
noise = [ |
|
getattr(self.noises, f"noise{i}") for i in range(self.num_layers) |
|
] |
|
|
|
if truncation < 1: |
|
style_truncation = [] |
|
for style in styles: |
|
style_truncation.append( |
|
truncation_latent + truncation * (style - truncation_latent) |
|
) |
|
styles = style_truncation |
|
|
|
if len(styles) == 1: |
|
inject_index = self.num_latent |
|
|
|
if styles[0].ndim < 3: |
|
|
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
else: |
|
latent = styles[0] |
|
elif len(styles) == 2: |
|
if inject_index is None: |
|
inject_index = random.randint(1, self.num_latent - 1) |
|
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
latent2 = ( |
|
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) |
|
) |
|
latent = torch.cat([latent1, latent2], 1) |
|
|
|
|
|
out = self.constant_input(latent.shape[0]) |
|
out = self.style_conv1(out, latent[:, 0], noise=noise[0]) |
|
skip = self.to_rgb1(out, latent[:, 1]) |
|
|
|
i = 1 |
|
for conv1, conv2, noise1, noise2, to_rgb in zip( |
|
self.style_convs[::2], |
|
self.style_convs[1::2], |
|
noise[1::2], |
|
noise[2::2], |
|
self.to_rgbs, |
|
): |
|
out = conv1(out, latent[:, i], noise=noise1) |
|
out = conv2(out, latent[:, i + 1], noise=noise2) |
|
skip = to_rgb(out, latent[:, i + 2], skip) |
|
i += 2 |
|
|
|
image = skip |
|
|
|
if return_latents: |
|
return image, latent |
|
else: |
|
return image, None |
|
|