Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from PyPDF2 import PdfReader | |
import numpy as np | |
from bark import generate_audio, preload_models | |
from scipy.io.wavfile import write as write_wav | |
import torch | |
import tempfile | |
import os | |
# Preload models if needed | |
preload_models() | |
def summarize_abstract_from_pdf(pdf_file): | |
# Function to extract and summarize the abstract from a PDF | |
abstract_string = 'abstract' | |
found_abstract = False | |
intro_string = 'introduction' | |
extracted_text_string = "" | |
# Read the PDF and extract text from the first page | |
reader = PdfReader(pdf_file) | |
text = reader.pages[0].extract_text() | |
for line in text.splitlines(): | |
lower_line = line.lower() | |
if lower_line.strip() == abstract_string: | |
found_abstract = True | |
elif "1" in lower_line.strip() and intro_string in lower_line.strip(): | |
found_abstract = False | |
if found_abstract: | |
extracted_text_string += line + " " | |
extracted_text_string = extracted_text_string.replace("Abstract", "") | |
# Use Hugging Face summarization pipeline | |
summarizer = pipeline("summarization", "pszemraj/led-base-book-summary", device=0 if torch.cuda.is_available() else -1) | |
summarized_abstract = summarizer(extracted_text_string, min_length=16, max_length=150, no_repeat_ngram_size=3, encoder_no_repeat_ngram_size=3, repetition_penalty=3.5, num_beams=4, early_stopping=True) | |
return summarized_abstract[0]['summary_text'] | |
def generate_audio_func(pdf_file): | |
text_prompt = summarize_abstract_from_pdf(pdf_file) | |
audio_array = generate_audio(text_prompt) | |
# Create a temporary WAV file to save the audio | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav_file: | |
write_wav(temp_wav_file.name, 22050, (audio_array * 32767).astype(np.int16)) | |
return temp_wav_file.name | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=generate_audio_func, | |
inputs=gr.inputs.File(file_types=["pdf"]), | |
outputs=gr.outputs.Audio(type="file"), | |
title="PDF to Audio Converter", | |
description="Convert text from a PDF file to audio. Upload a PDF file with an abstract to get started." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |