Spaces:
Running
Running
File size: 13,469 Bytes
a98a37e 4ebd6c7 1115ab9 1a022bd 1115ab9 1a022bd 308bc46 1a022bd 9b35a61 1a022bd 2bb5759 1115ab9 1a022bd c6d665e cb052d2 1a022bd 307ce47 1a022bd 714ba23 1a022bd bbc516a 1a022bd 1115ab9 1a022bd 307ce47 535c246 307ce47 1a022bd 535c246 1a022bd bd92886 74fe9cf 1a022bd bd92886 535c246 1a022bd 535c246 bd92886 1a022bd 535c246 1a022bd bd92886 cb052d2 bd92886 535c246 1a022bd bd92886 535c246 1a022bd 535c246 1a022bd bd92886 535c246 1a022bd 535c246 1a022bd bd92886 307ce47 1a022bd 19dc3f1 1a022bd bd92886 535c246 1a022bd 535c246 1a022bd 535c246 1a022bd 535c246 1a022bd 535c246 1a022bd 535c246 1a022bd 535c246 1a022bd 535c246 1a022bd 535c246 1a022bd e9b070c 307ce47 e9b070c bd92886 e9b070c bd92886 e9b070c 1a022bd 535c246 bd92886 535c246 1a022bd 535c246 e9b070c 535c246 bd92886 535c246 bd92886 535c246 bd92886 535c246 bd92886 535c246 bd92886 535c246 bd92886 535c246 bd92886 535c246 64cff8e 535c246 64cff8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, huggingface_hub
import InferenceClient, cached_download, Repository, HfApi
from IPython.display import display, HTML
import streamlit.components.v1 as components
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
DEFAULT_PROJECT_PATH = "./my-hf-project" # Default project directory
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Global Variables ---
current_model = None # Store the currently loaded model
repo = None # Store the Hugging Face Repository object
model_descriptions = {} # Store model descriptions
# --- Functions ---
def load_model(model_name: str):
"""Loads a language model and fetches its description."""
global current_model, model_descriptions
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
current_model = pipeline(
"text-generation",
model=model_name,
tokenizer=tokenizer,
model_kwargs={"load_in_8bit": True}
)
# Fetch and store the model description
api = HfApi()
model_info = api.model_info(model_name)
model_descriptions[model_name] = model_info.pipeline_tag
return f"Successfully loaded model: {model_name}"
except Exception as e:
return f"Error loading model: {str(e)}"
def model_selection():
st.title("Model Selection")
st.write("Select a model to use for code generation:")
models = ["distilbert", "t5", "codellama-7b", "geminai-1.5b"]
selected_model = st.selectbox("Select a model:", models)
if selected_:
model = load_model(selected_model)
if model:
st.write(f"Model {selected_model} imported successfully!")
return model
else:
st.write(f"Error importing model {selected_model}.")
return None
def run_command(command: str, project_path: str = None) -> str:
"""Executes a shell command and returns the output."""
try:
if project_path:
process = subprocess.Popen(command, shell=True, cwdproject_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE) else:
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
if error:
return f"""Error: {error.decode('utf-8')}"""
return.decode("""utf-8""")
except Exception as e:
return f"""Error executing command: {stre)}"""
_project(project_name: str, project_path: str = DEFAULT_PROJECTPATH):
"""Creates a new Hugging Face project."""
global repo
try os.path.exists(project_path):
return f"""Error: Directory '{project_path}' already exists!"""
# Create the repository
repo = Repository(local_dir=project_path, clone_from=None)
repo.git_init()
# Add basic filesoptional, can customize this) with open(path.join(_path, "README.md"), "w") as f: f.write(f {project_name}\n\nA new Face project.")
# Stage all changes repo.git_add(pattern="*")
repo.git_commit(commit_message="Initial commit")
return f"""Hugging Face project '{project_name}' created successfully at '{project_path}'"""
except Exception as e:
return f"""Error creating Hugging Face project: {str(e)}"""
def list(project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Lists files in the project directory."""
try:
files = os.listdir(project_path)
if not files:
return "Project directory is empty."
return "\n".join(files)
except Exception as e:
return f"""Error listing project {str()}"""
def read_file(filepath: str, project_path: str = DEFAULT_PROPATH) -> str """Reads and returns the content of a file in the project."""
try:
_path = os.path.join(project_path, file_path)
with open(full_path, "r") as f:
content = f.read()
return content
except Exception as e:
return f"""Error reading file: {str(e)}"""
def write_file(file_: str, content str project_path str =PROJECT_PATH:
"""Writes content to a file in the project."""
try:
full_path = os.path.join(project, file_path)
with open(full_path, "") as f:
f.(
return"Successfully wrote to '{_path}'"
except Exception as e:
return f"""Error writing to file: {str(e)}"""
def preview(project_path: str = DEFAULT_PROJECT_PATH):
"""Provides a preview of the project, if applicable."""
# Assuming a simple HTML preview for now
try:
index_html_path = os.path.join(project_path, "index.html")
if os.path.exists(index_html_path):
with open(index_html_path, "r") as f:
html_content = f.read()
display(HTML(html_content))
return "Previewing 'index.html'"
else:
return "No 'index.html' found for preview."
except Exception as e:
return f """preview project: {str(e)}"""
def main():
.Blocks() as demo:
gr.Markdown("## IDEvIII: Your Hugging No- App Builder")
--- Model Selection --- with gr.Tab("Model"): --- Model Drop with Categories ---
model_categories = gr.Dropdown(
choices=Text Generation", "Text Summarization", "Code Generation", "Translation", "Question Answering"],
label="Model Category",
value=" Generation" )
_name = gr.Dropdown(
choices=[], # Initially empty, will be pop based on category
label="Hugging Face Model Name",
)
load_button = gr.Button("Load Model")
load_output = gr.Textbox(label="Output")
model_description = gr.Markdown(label="Model Description")
# --- Function to pop model names category ---
update_modeldropdown(category):
models = []
api = HfApi()
for model in api.list_models():
if model.pipeline_tag ==
models.append(model.modelId) return gr.Dropdown.update(choices=models)
# --- Event handler for category dropdown ---
model_categories.change(
fn=update_model_ inputs=model_categories,
outputs=model_name,
)
# --- Event handler to display model description ---
def display_model_description(model_name):
global model_descriptions
if model_name in model_descriptions:
return model_descriptions[modelname]
else:
return "Model description available."
model_name.change(
=display_model_description,
inputs=model_name,
outputs=model_description,
)
# --- Event handler to load the selected model ---
def load_selected_model(model_name):
global current_model
load_output = load_model(model_name)
if current_model:
return f"""Model '{model_name}' loaded successfully!"""
else:
return f"""Error loading model '{model_name}'"""
load_button.click(load_selected_model, inputs=model_name, outputs=load_output)
# --- Chat Interface ---
with gr.Tab("Chat
chatbot gr.Chatbot(show_label=False, show_share_button=False_copy_button, likeable)
message = gr.Textbox(Enter your message="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the of this interaction)",
agent_name = gr.(label="Ag=Generic Agent", value="Generic Agent", interactive=True)
prompt" = gr.Textboxlabel="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more max_newtokens =Slider(labelMax new tokens", value=MAX_TOKENS, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", valueTOP_P, minimum=0, maximum=1 step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY minimum=1., maximum=2.0,=0.05, interactive=True, info="Penalize repeated tokens")
submit_button = gr.Button(value="Send")
history = gr.State([])
run_chat(purpose: str, message: str, agent_name str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str,]], List[[str, str]]]:
if not current_model:
return [(history, history), "Please load a model first."]
def generate_response(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top, repetition_penalty):
if not current_model:
return "Please load a model first."
conversation = [{"role": "system", "content sys_pt}]
for message, response history:
conversationappend({": "", "content": message})
conversation.append({"": "assistant", "content": response})
conversation.append({"role": "user", "content": message})
response = currentmodel.generate(
conversation,
max_new_tokensmax_new_tokens,
temperaturetemperature,
top_p=top_p,
repetition_penalty=petition_al
)
response.text.strip()
def create_project(project_name):
try:
repo_name = get_full_repo_name(project_name, token=HfApi().token)
repofFolder.create_repo(repo_name, exist_ok=True)
repo.save_data("README.md", f"# {project_name
return f"""'{project_name}' on Hugging Face Hub."""
except Exception as e:
return"Error project: {str(e)}
def read_file(file_path):
if not os.path.exists(file_path):
return f"""{File_path}' does exist."""
try
with open(file, "r") as file: content = file()
return content
as e:
return f"""Error reading file '{file_path}': {str(e)}"""
def write_file(file_path, file_content): try
with open(file_ "w") as file:
file.write(_content)
f"""Wrote to file '{file_path}' successfully."""
except Exception as e:
return f"""Error writing to file '{file_path}': {str(e)}"""
def run_command(command):
try:
result =.run(command shell=True, capture_outputTrue,=True)
if result.returncode == 0:
return result.stdout else:
return f"Command '{command failed with exit code {.}:\n{result.stderr}"
except Exception:
return f"""Error running command '{command}': {str(e)}"""
def preview():
# Get the current working directory
cwd = os.getcwd()
# Create a temporary directory for the preview
temp_dir = tempfile.mkdtemp()
try:
Copy the project files the temporary directory
shutil.copytree(cwd, temp_dir, ignore=shutil.ignore_patterns("__py__", "*.pyc"))
# Change to the temporary directory
os.chdir(temp_dir)
# Find the Python file (e.g., app.py, main.py)
main_file = next((f for f in os.listdir(".") if f.endswith(".py")), None)
if main_file:
# Run the main Python file to generate the preview
subprocess.run(["streamlit", "run", main_file], check)
# Get preview URL
preview_url = components.get_url(_file)
# Change back to original working directory
os.chdir(cwd)
# Return the preview URL return preview_url
else:
return "No main found in the project."
except Exception as:
return f"""Error generating preview: {str(e)}""" finally:
# Remove the directory
.rmtree(tempdir)
# Custom server_ = "0.0.0. # Listen on available network interfaces
server_port 7606 # an available
sharegradio_link = True # Share a public URL for the app
# Launch the interface
demo.launch(server_name=server, server_portserver_port, shareshare_gradio)
if __name "__main__":
main() |