File size: 13,755 Bytes
96dff05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7a06a
96dff05
 
 
 
 
 
 
6c9bc25
96dff05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c9bc25
96dff05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import subprocess
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
from mixtral import InstructModel  # Import Mixtral Instruct

HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"

# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
    st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
    st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
    st.session_state.available_agents = []
if 'current_state' not in st.session_state:
    st.session_state.current_state = {
        'toolbox': {},
        'workspace_chat': {}
    }

class AIAgent:
    def __init__(self, name, description, skills):
        self.name = name
        self.description = description
        self.skills = skills

    def create_agent_prompt(self):
        skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
        agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}

I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
        return agent_prompt

    def autonomous_build(self, chat_history, workspace_projects):
        """
        Autonomous build logic that continues based on the state of chat history and workspace projects.
        """
        summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
        summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])

        next_step = "Based on the current state, the next logical step is to implement the main application logic."

        return summary, next_step

def save_agent_to_file(agent):
    """Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
    if not os.path.exists(AGENT_DIRECTORY):
        os.makedirs(AGENT_DIRECTORY)
    file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
    config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
    with open(file_path, "w") as file:
        file.write(agent.create_agent_prompt())
    with open(config_path, "w") as file:
        file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
    st.session_state.available_agents.append(agent.name)
    commit_and_push_changes(f"Add agent {agent.name}")

def load_agent_prompt(agent_name):
    """Loads an agent prompt from a file."""
    file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
    if os.path.exists(file_path):
        with open(file_path, "r") as file:
            agent_prompt = file.read()
        return agent_prompt
    else:
        return None

def create_agent_from_text(name, text):
    skills = text.split('\n')
    agent = AIAgent(name, "AI agent created from text input.", skills)
    save_agent_to_file(agent)
    return agent.create_agent_prompt()

def chat_interface_with_agent(input_text, agent_name):
    agent_prompt = load_agent_prompt(agent_name)
    if agent_prompt is None:
        return f"Agent {agent_name} not found."

    try:
        model = InstructModel()  # Initialize Mixtral Instruct model
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
    response = model.generate_response(combined_input)  # Generate response using Mixtral Instruct
    return response

def workspace_interface(project_name):
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if not os.path.exists(PROJECT_ROOT):
        os.makedirs(PROJECT_ROOT)
    if not os.path.exists(project_path):
        os.makedirs(project_path)
        st.session_state.workspace_projects[project_name] = {"files": []}
        st.session_state.current_state['workspace_chat']['project_name'] = project_name
        commit_and_push_changes(f"Create project {project_name}")
        return f"Project {project_name} created successfully."
    else:
        return f"Project {project_name} already exists."

def add_code_to_workspace(project_name, code, file_name):
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if os.path.exists(project_path):
        file_path = os.path.join(project_path, file_name)
        with open(file_path, "w") as file:
            file.write(code)
        st.session_state.workspace_projects[project_name]["files"].append(file_name)
        st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
        commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
        return f"Code added to {file_name} in project {project_name} successfully."
    else:
        return f"Project {project_name} does not exist."

def terminal_interface(command, project_name=None):
    if project_name:
        project_path = os.path.join(PROJECT_ROOT, project_name)
        if not os.path.exists(project_path):
            return f"Project {project_name} does not exist."
        result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
    else:
        result = subprocess.run(command, shell=True, capture_output=True, text=True)
    if result.returncode == 0:
        st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
        return result.stdout
    else:
        st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
        return result.stderr

def code_editor_interface(code):
    try:
        formatted_code = black.format_str(code, mode=black.FileMode())
    except black.NothingChanged:
        formatted_code = code
    result = StringIO()
    sys.stdout = result
    sys.stderr = result
    (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
    sys.stdout = sys.__stdout__
    sys.stderr = sys.__stderr__
    lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
    st.session_state.current_state['toolbox']['formatted_code'] = formatted_code
    st.session_state.current_state['toolbox']['lint_message'] = lint_message
    return formatted_code, lint_message

def translate_code(code, input_language, output_language):
    # Use a Hugging Face translation model to handle end-to-end code translation
    translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")  # Example: English to Spanish
    translated_code = translator(code, target_lang=output_language)[0]['translation_text']
    st.session_state.current_state['toolbox']['translated_code'] = translated_code
    return translated_code

def generate_code(code_idea):
    # Use a Hugging Face code generation model
    generator = pipeline('text-generation', model='bigcode/starcoder')
    generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
    st.session_state.current_state['toolbox']['generated_code'] = generated_code
    return generated_code

def commit_and_push_changes(commit_message):
    """Commits and pushes changes to the Hugging Face repository."""
    commands = [
        "git add .",
        f"git commit -m '{commit_message}'",
        "git push"
    ]
    for command in commands:
        result = subprocess.run(command, shell=True, capture_output=True, text=True)
        if result.returncode != 0:
            st.error(f"Error executing command '{command}': {result.stderr}")
            break

# Streamlit App
st.title("AI Agent Creator")

# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])

if app_mode == "AI Agent Creator":
    # AI Agent Creator
    st.header("Create an AI Agent from Text")

    st.subheader("From Text")
    agent_name = st.text_input("Enter agent name:")
    text_input = st.text_area("Enter skills (one per line):")
    if st.button("Create Agent"):
        agent_prompt = create_agent_from_text(agent_name, text_input)
        st.success(f"Agent '{agent_name}' created and saved successfully.")
        st.session_state.available_agents.append(agent_name)

elif app_mode == "Tool Box":
    # Tool Box
    st.header("AI-Powered Tools")

    # Chat Interface
    st.subheader("Chat with CodeCraft")
    chat_input = st.text_area("Enter your message:")
    if st.button("Send"):
        if chat_input.startswith("@"):
            agent_name = chat_input.split(" ")[0][1:]  # Extract agent_name from @agent_name
            chat_input = " ".join(chat_input.split(" ")[1:])  # Remove agent_name from input
            chat_response = chat_interface_with_agent(chat_input, agent_name)
        else:
            chat_response = chat_interface(chat_input)
        st.session_state.chat_history.append((chat_input, chat_response))
        st.write(f"CodeCraft: {chat_response}")

    # Terminal Interface
    st.subheader("Terminal")
    terminal_input = st.text_input("Enter a command:")
    if st.button("Run"):
        terminal_output = terminal_interface(terminal_input)
        st.session_state.terminal_history.append((terminal_input, terminal_output))
        st.code(terminal_output, language="bash")

    # Code Editor Interface
    st.subheader("Code Editor")
    code_editor = st.text_area("Write your code:", height=300)
    if st.button("Format & Lint"):
        formatted_code, lint_message = code_editor_interface(code_editor)
        st.code(formatted_code, language="python")
        st.info(lint_message)

    # Text Translation Tool (Code Translation)
    st.subheader("Translate Code")
    code_to_translate = st.text_area("Enter code to translate:")
    source_language = st.text_input("Enter source language (e.g., 'Python'):")
    target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
    if st.button("Translate Code"):
        translated_code = translate_code(code_to_translate, source_language, target_language)
        st.code(translated_code, language=target_language.lower())

    # Code Generation
    st.subheader("Code Generation")
    code_idea = st.text_input("Enter your code idea:")
    if st.button("Generate Code"):
        generated_code = generate_code(code_idea)
        st.code(generated_code, language="python")

elif app_mode == "Workspace Chat App":
    # Workspace Chat App
    st.header("Workspace Chat App")

    # Project Workspace Creation
    st.subheader("Create a New Project")
    project_name = st.text_input("Enter project name:")
    if st.button("Create Project"):
        workspace_status = workspace_interface(project_name)
        st.success(workspace_status)

    # Add Code to Workspace
    st.subheader("Add Code to Workspace")
    code_to_add = st.text_area("Enter code to add to workspace:")
    file_name = st.text_input("Enter file name (e.g., 'app.py'):")
    if st.button("Add Code"):
        add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
        st.success(add_code_status)

    # Terminal Interface with Project Context
    st.subheader("Terminal (Workspace Context)")
    terminal_input = st.text_input("Enter a command within the workspace:")
    if st.button("Run Command"):
        terminal_output = terminal_interface(terminal_input, project_name)
        st.code(terminal_output, language="bash")

    # Chat Interface for Guidance
    st.subheader("Chat with CodeCraft for Guidance")
    chat_input = st.text_area("Enter your message for guidance:")
    if st.button("Get Guidance"):
        chat_response = chat_interface(chat_input)
        st.session_state.chat_history.append((chat_input, chat_response))
        st.write(f"CodeCraft: {chat_response}")

    # Display Chat History
    st.subheader("Chat History")
    for user_input, response in st.session_state.chat_history:
        st.write(f"User: {user_input}")
        st.write(f"CodeCraft: {response}")

    # Display Terminal History
    st.subheader("Terminal History")
    for command, output in st.session_state.terminal_history:
        st.write(f"Command: {command}")
        st.code(output, language="bash")

    # Display Projects and Files
    st.subheader("Workspace Projects")
    for project, details in st.session_state.workspace_projects.items():
        st.write(f"Project: {project}")
        for file in details['files']:
            st.write(f"  - {file}")

    # Chat with AI Agents
    st.subheader("Chat with AI Agents")
    selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
    agent_chat_input = st.text_area("Enter your message for the agent:")
    if st.button("Send to Agent"):
        agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
        st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
        st.write(f"{selected_agent}: {agent_chat_response}")

    # Automate Build Process
    st.subheader("Automate Build Process")
    if st.button("Automate"):
        agent = AIAgent(selected_agent, "", [])  # Load the agent without skills for now
        summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
        st.write("Autonomous Build Summary:")
        st.write(summary)
        st.write("Next Step:")
        st.write(next_step)