Spaces:
Running
Running
import os | |
import streamlit as st | |
import subprocess | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM | |
import black | |
from pylint import lint | |
import sys | |
import torch | |
from huggingface_hub import hf_hub_url, cached_download, HfApi | |
import base64 | |
# Set your Hugging Face API key here | |
# hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token | |
# Get Hugging Face token from secrets.toml - this line should already be in the main code | |
hf_token = st.secrets["huggingface"]["hf_token"] | |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit" | |
PROJECT_ROOT = "projects" | |
return refined_response | |
class AIAgent: | |
def __init__(self, name, description, skills, hf_api=None): | |
self.name = name | |
self.description = description | |
self.skills = skills | |
self._hf_api = hf_api | |
self._hf_token = hf_token # Store the token here | |
def hf_api(self): | |
if not self._hf_api and self.has_valid_hf_token(): | |
self._hf_api = HfApi(token=self._hf_token) | |
return self._hf_api | |
def has_valid_hf_token(self): | |
return bool(self._hf_token) | |
async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token): | |
self._hf_token = hf_token | |
# Continuation of previous methods | |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) | |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) | |
st.error(f"Build Error: {e}") | |
return summary, next_step | |
def deploy_built_space_to_hf(self): | |
if not self._hf_api or not self._hf_token: | |
raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.") | |
# Assuming you have a function to get the files for your Space | |
repository_name = f"my-awesome-space_{datetime.now().timestamp()}" | |
files = get_built_space_files() # Placeholder - you'll need to define this function | |
# Create the Space | |
create_space(self.hf_api, repository_name, "Description", True, files) | |
st.markdown("## Congratulations! Successfully deployed Space 🚀 ##") | |
st.markdown(f"[Check out your new Space here](https://huggingface.co/spaces/{repository_name})") | |
# Add any missing functions from your original code (e.g., get_built_space_files) | |
def get_built_space_files(): | |
# Replace with your logic to gather the files you want to deploy | |
return { | |
"app.py": "# Your Streamlit app code here", | |
"requirements.txt": "streamlit\ntransformers" | |
# Add other files as needed | |
} | |
def save_agent_to_file(agent): | |
"""Saves the agent's prompt to a file.""" | |
st.session_state.workspace_projects[project_name]['files'].append(file_name) | |
return f"Code added to '{file_name}' in project '{project_name}'." | |
def create_space(api, name, description, public, files, entrypoint="launch.py"): | |
url = f"{hf_hub_url()}spaces/{name}/prepare-repo" | |
headers = {"Authorization": f"Bearer {api.access_token}"} | |
payload = { | |
"public": public, | |
"gitignore_template": "web", | |
"default_branch": "main", | |
"archived": False, | |
"files": [] | |
} | |
for filename, contents in files.items(): | |
data = { | |
"content": contents, | |
"path": filename, | |
"encoding": "utf-8", | |
"mode": "overwrite" if "#\{random.randint(0, 1)\}" not in contents else "merge", | |
} | |
payload["files"].append(data) | |
response = requests.post(url, json=payload, headers=headers) | |
response.raise_for_status() | |
location = response.headers.get("Location") | |
# wait_for_processing(location, api) # You might need to implement this if it's not already defined | |
return Repository(name=name, api=api) | |
# Streamlit App | |
st.title("AI Agent Creator") | |
elif app_mode == "Workspace Chat App": | |
# Workspace Chat App | |
st.header("Workspace Chat App") | |
def get_built_space_files(): | |
""" | |
Gathers the necessary files for the Hugging Face Space, | |
handling different project structures and file types. | |
""" | |
files = {} | |
# Get the current project name (adjust as needed) | |
project_name = st.session_state.get('project_name', 'my_project') | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
# Define a list of files/directories to search for | |
targets = [ | |
"app.py", | |
"requirements.txt", | |
"Dockerfile", | |
"docker-compose.yml", # Example YAML file | |
"src", # Example subdirectory | |
"assets" # Another example subdirectory | |
] | |
# Iterate through the targets | |
for target in targets: | |
target_path = os.path.join(project_path, target) | |
# If the target is a file, add it to the files dictionary | |
if os.path.isfile(target_path): | |
add_file_to_dictionary(files, target_path) | |
# If the target is a directory, recursively search for files within it | |
elif os.path.isdir(target_path): | |
for root, _, filenames in os.walk(target_path): | |
for filename in filenames: | |
file_path = os.path.join(root, filename) | |
add_file_to_dictionary(files, file_path) | |
return files | |
def add_file_to_dictionary(files, file_path): | |
"""Helper function to add a file to the files dictionary.""" | |
filename = os.path.relpath(file_path, PROJECT_ROOT) # Get relative path | |
# Handle text and binary files | |
if filename.endswith((".py", ".txt", ".json", ".html", ".css", ".yml", ".yaml")): | |
with open(file_path, "r") as f: | |
files[filename] = f.read() | |
else: | |
with open(file_path, "rb") as f: | |
file_content = f.read() | |
files[filename] = base64.b64encode(file_content).decode("utf-8") | |
# Project Workspace Creation | |
st.subheader("Create a New Project") | |
project_name = st.text_input("Enter project name:") | |
st.write(summary) | |
st.write("Next Step:") | |
st.write(next_step) | |
# Using the modified and extended class and functions, update the callback for the 'Automate' button in the Streamlit UI: | |
if st.button("Automate", args=(hf_token,)): | |
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now | |
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token) | |
st.write("Autonomous Build Summary:") | |
st.write(summary) | |
st.write("Next Step:") | |
st.write(next_step) | |
# If everything went well, proceed to deploy the Space | |
if agent._hf_api and agent.has_valid_hf_token(): | |
agent.deploy_built_space_to_hf() | |
# Use the hf_token to interact with the Hugging Face API | |
api = HfApi(token=hf_token) | |
# Function to create a Space on Hugging Face |