Spaces:
Running
Running
import os | |
import sys | |
import subprocess | |
import base64 | |
import json | |
from io import StringIO | |
from typing import Dict, List | |
import streamlit as st | |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer | |
from pylint import lint | |
# Add your Hugging Face API token here | |
hf_token = st.secrets["hf_token"] | |
# Global state to manage communication between Tool Box and Workspace Chat App | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
if "terminal_history" not in st.session_state: | |
st.session_state.terminal_history = [] | |
if "workspace_projects" not in st.session_state: | |
st.session_state.workspace_projects = {} | |
# Load pre-trained RAG retriever | |
rag_retriever = pipeline("retrieval-question-answering", model="facebook/rag-token-base") | |
# Load pre-trained chat model | |
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
def process_input(user_input: str) -> str: | |
# Input pipeline: Tokenize and preprocess user input | |
input_ids = tokenizer(user_input, return_tensors="pt").input_ids | |
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask | |
# RAG model: Generate response | |
with torch.no_grad(): | |
output = rag_retriever(input_ids, attention_mask=attention_mask) | |
response = output.generator_outputs[0].sequences[0] | |
# Chat model: Refine response | |
chat_input = tokenizer(response, return_tensors="pt") | |
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0) | |
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0) | |
with torch.no_grad(): | |
chat_output = chat_model(**chat_input) | |
refined_response = chat_output.sequences[0] | |
# Output pipeline: Return final response | |
return refined_response | |
class AIAgent: | |
def __init__(self, name: str, description: str, skills: List[str], hf_api=None): | |
self.name = name | |
self.description = description | |
self.skills = skills | |
self._hf_api = hf_api | |
self._hf_token = hf_token | |
def hf_api(self): | |
if not self._hf_api and self.has_valid_hf_token(): | |
self._hf_api = HfApi(token=self._hf_token) | |
return self._hf_api | |
def has_valid_hf_token(self): | |
return bool(self._hf_token) | |
async def autonomous_build(self, chat_history: List[str], workspace_projects: Dict[str, str], project_name: str, selected_model: str): | |
# Continuation of previous methods | |
summary = "Chat History:\n" + "\n".join(chat_history) | |
summary += "\n\nWorkspace Projects:\n" + "\n".join(workspace_projects.items()) | |
# Analyze chat history and workspace projects to suggest actions | |
# Example: | |
# - Check if the user has requested to create a new file | |
# - Check if the user has requested to install a package | |
# - Check if the user has requested to run a command | |
# - Check if the user has requested to generate code | |
# - Check if the user has requested to translate code | |
# - Check if the user has requested to summarize text | |
# - Check if the user has requested to analyze sentiment | |
# Generate a response based on the analysis | |
next_step = "Based on the current state, the next logical step is to implement the main application logic." | |
# Ensure project folder exists | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(project_path): | |
os.makedirs(project_path) | |
# Create requirements.txt if it doesn't exist | |
requirements_file = os.path.join(project_path, "requirements.txt") | |
if not os.path.exists(requirements_file): | |
with open(requirements_file, "w") as f: | |
f.write("# Add your project's dependencies here\n") | |
# Create app.py if it doesn't exist | |
app_file = os.path.join(project_path, "app.py") | |
if not os.path.exists(app_file): | |
with open(app_file, "w") as f: | |
f.write("# Your project's main application logic goes here\n") | |
# Generate GUI code for app.py if requested | |
if "create a gui" in summary.lower(): | |
gui_code = generate_code( | |
"Create a simple GUI for this application", selected_model) | |
with open(app_file, "a") as f: | |
f.write(gui_code) | |
# Run the default build process | |
build_command = "pip install -r requirements.txt && python app.py" | |
try: | |
result = subprocess.run( | |
build_command, shell=True, capture_output=True, text=True, cwd=project_path) | |
st.write(f"Build Output:\n{result.stdout}") | |
if result.stderr: | |
st.error(f"Build Errors:\n{result.stderr}") | |
except Exception as e: | |
st.error(f"Build Error: {e}") | |
return summary, next_step | |
def get_built_space_files() -> Dict[str, str]: | |
# Replace with your logic to gather the files you want to deploy | |
return { | |
"app.py": "# Your Streamlit app code here", | |
"requirements.txt": "streamlit\ntransformers" | |
# Add other files as needed | |
} | |
def save_agent_to_file(agent: AIAgent): | |
"""Saves the agent's prompt to a file.""" | |
if not os.path.exists(AGENT_DIRECTORY): | |
os.makedirs(AGENT_DIRECTORY) | |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt") | |
with open(file_path, "w") as file: | |
file.write(agent.create_agent_prompt()) | |
st.session_state.available_agents.append(agent.name) | |
def load_agent_prompt(agent_name: str) -> str: | |
"""Loads an agent prompt from a file.""" | |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") | |
if os.path.exists(file_path): | |
with open(file_path, "r") as file: | |
agent_prompt = file.read() | |
return agent_prompt | |
else: | |
return None | |
def create_agent_from_text(name: str, text: str) -> str: | |
skills = text.split("\n") | |
agent = AIAgent(name, "AI agent created from text input.", skills) | |
save_agent_to_file(agent) | |
return agent.create_agent_prompt() | |
def chat_interface_with_agent(input_text: str, agent_name: str) -> str: | |
agent_prompt = load_agent_prompt(agent_name) | |
if agent_prompt is None: | |
return f"Agent {agent_name} not found." | |
model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"import os | |
import subprocess | |
import streamlit as st | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import black | |
from pylint import lint | |
from io import StringIO | |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit" | |
PROJECT_ROOT = "projects" | |
AGENT_DIRECTORY = "agents" | |
# Global state to manage communication between Tool Box and Workspace Chat App | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
if 'terminal_history' not in st.session_state: | |
st.session_state.terminal_history = [] | |
if 'workspace_projects' not in st.session_state: | |
st.session_state.workspace_projects = {} | |
if 'available_agents' not in st.session_state: | |
st.session_state.available_agents = [] | |
if 'current_state' not in st.session_state: | |
st.session_state.current_state = { | |
'toolbox': {}, | |
'workspace_chat': {} | |
} | |
class AIAgent: | |
def __init__(self, name, description, skills): | |
self.name = name | |
self.description = description | |
self.skills = skills | |
def create_agent_prompt(self): | |
skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) | |
agent_prompt = f""" | |
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas: | |
{skills_str} | |
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter. | |
""" | |
return agent_prompt | |
def autonomous_build(self, chat_history, workspace_projects): | |
""" | |
Autonomous build logic that continues based on the state of chat history and workspace projects. | |
""" | |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) | |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) | |
next_step = "Based on the current state, the next logical step is to implement the main application logic." | |
return summary, next_step | |
def save_agent_to_file(agent): | |
"""Saves the agent's prompt to a file locally and then commits to the Hugging Face repository.""" | |
if not os.path.exists(AGENT_DIRECTORY): | |
os.makedirs(AGENT_DIRECTORY) | |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt") | |
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt") | |
with open(file_path, "w") as file: | |
file.write(agent.create_agent_prompt()) | |
with open(config_path, "w") as file: | |
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}") | |
st.session_state.available_agents.append(agent.name) | |
commit_and_push_changes(f"Add agent {agent.name}") | |
def load_agent_prompt(agent_name): | |
"""Loads an agent prompt from a file.""" | |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") | |
if os.path.exists(file_path): | |
with open(file_path, "r") as file: | |
agent_prompt = file.read() | |
return agent_prompt | |
else: | |
return None | |
def create_agent_from_text(name, text): | |
skills = text.split('\n') | |
agent = AIAgent(name, "AI agent created from text input.", skills) | |
save_agent_to_file(agent) | |
return agent.create_agent_prompt() | |
# Chat interface using a selected agent | |
def chat_interface_with_agent(input_text, agent_name): | |
agent_prompt = load_agent_prompt(agent_name) | |
if agent_prompt is None: | |
return f"Agent {agent_name} not found." | |
# Load the GPT-2 model which is compatible with AutoModelForCausalLM | |
model_name = "gpt2" | |
try: | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
except EnvironmentError as e: | |
return f"Error loading model: {e}" | |
# Combine the agent prompt with user input | |
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:" | |
# Truncate input text to avoid exceeding the model's maximum length | |
max_input_length = 900 | |
input_ids = tokenizer.encode(combined_input, return_tensors="pt") | |
if input_ids.shape[1] > max_input_length: | |
input_ids = input_ids[:, :max_input_length] | |
# Generate chatbot response | |
outputs = model.generate( | |
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
def workspace_interface(project_name): | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(PROJECT_ROOT): | |
os.makedirs(PROJECT_ROOT) | |
if not os.path.exists(project_path): | |
os.makedirs(project_path) | |
st.session_state.workspace_projects[project_name] = {"files": []} | |
st.session_state.current_state['workspace_chat']['project_name'] = project_name | |
commit_and_push_changes(f"Create project {project_name}") | |
return f"Project {project_name} created successfully." | |
else: | |
return f"Project {project_name} already exists." | |
def add_code_to_workspace(project_name, code, file_name): | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if os.path.exists(project_path): | |
file_path = os.path.join(project_path, file_name) | |
with open(file_path, "w") as file: | |
file.write(code) | |
st.session_state.workspace_projects[project_name]["files"].append(file_name) | |
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code} | |
commit_and_push_changes(f"Add code to {file_name} in project {project_name}") | |
return f"Code added to {file_name} in project {project_name} successfully." | |
else: | |
return f"Project {project_name} does not exist." | |
def terminal_interface(command, project_name=None): | |
if project_name: | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(project_path): | |
return f"Project {project_name} does not exist." | |
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True) | |
else: | |
result = subprocess.run(command, shell=True, capture_output=True, text=True) | |
if result.returncode == 0: | |
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout | |
return result.stdout | |
else: | |
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr | |
return result.stderr | |
def summarize_text(text): | |
summarizer = pipeline("summarization") | |
summary = summarizer(text, max_length=50, min_length=25, do_sample=False) | |
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text'] | |
return summary[0]['summary_text'] | |
def sentiment_analysis(text): | |
analyzer = pipeline("sentiment-analysis") | |
sentiment = analyzer(text) | |
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0] | |
return sentiment[0] | |
# ... [rest of the translate_code function, but remove the OpenAI API call and replace it with your own logic] ... | |
def generate_code(code_idea): | |
# Replace this with a call to a Hugging Face model or your own logic | |
# For example, using a text-generation pipeline: | |
generator = pipeline('text-generation', model='gpt4o') | |
generated_code = generator(code_idea, max_length=10000, num_return_sequences=1)[0]['generated_text'] | |
messages=[ | |
{"role": "system", "content": "You are an expert software developer."}, | |
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"} | |
] | |
st.session_state.current_state['toolbox']['generated_code'] = generated_code | |
return generated_code | |
def translate_code(code, input_language, output_language): | |
# Define a dictionary to map programming languages to their corresponding file extensions | |
language_extensions = { | |
"Python": "py", | |
"JavaScript": "js", | |
"Java": "java", | |
"C++": "cpp", | |
"C#": "cs", | |
"Ruby": "rb", | |
"Go": "go", | |
"PHP": "php", | |
"Swift": "swift", | |
"TypeScript": "ts", | |
} | |
# Add code to handle edge cases such as invalid input and unsupported programming languages | |
if input_language not in language_extensions: | |
raise ValueError(f"Invalid input language: {input_language}") | |
if output_language not in language_extensions: | |
raise ValueError(f"Invalid output language: {output_language}") | |
# Use the dictionary to map the input and output languages to their corresponding file extensions | |
input_extension = language_extensions[input_language] | |
output_extension = language_extensions[output_language] | |
# Translate the code using the OpenAI API | |
prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}" | |
response = openai.ChatCompletion.create( | |
model="gpt-4", | |
messages=[ | |
{"role": "system", "content": "You are an expert software developer."}, | |
{"role": "user", "content": prompt} | |
] | |
) | |
translated_code = response.choices[0].message['content'].strip() | |
# Return the translated code | |
translated_code = response.choices[0].message['content'].strip() | |
st.session_state.current_state['toolbox']['translated_code'] = translated_code | |
return translated_code | |
def generate_code(code_idea): | |
response = openai.ChatCompletion.create( | |
model="gpt-4", | |
messages=[ | |
{"role": "system", "content": "You are an expert software developer."}, | |
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"} | |
] | |
) | |
generated_code = response.choices[0].message['content'].strip() | |
st.session_state.current_state['toolbox']['generated_code'] = generated_code | |
return generated_code | |
def commit_and_push_changes(commit_message): | |
"""Commits and pushes changes to the Hugging Face repository.""" | |
commands = [ | |
"git add .", | |
f"git commit -m '{commit_message}'", | |
"git push" | |
] | |
for command in commands: | |
result = subprocess.run(command, shell=True, capture_output=True, text=True) | |
if result.returncode != 0: | |
st.error(f"Error executing command '{command}': {result.stderr}") | |
break | |
def interact_with_web_interface(agent, api_key, url, payload): | |
""" | |
Interacts with a web interface using the provided API key and payload. | |
Args: | |
agent: The AIAgent instance. | |
api_key: The API key for the web interface. | |
url: The URL of the web interface. | |
payload: The payload to send to the web interface. | |
Returns: | |
The response from the web interface. | |
""" | |
# Use the agent's knowledge to determine the appropriate HTTP method and headers. | |
http_method = agent.get_http_method(url) | |
headers = agent.get_headers(url) | |
# Add the API key to the headers. | |
headers["Authorization"] = f"Bearer {api_key}" | |
# Send the request to the web interface. | |
response = requests.request(http_method, url, headers=headers, json=payload) | |
# Return the response. | |
return response | |
def get_http_method(url): | |
""" | |
Determines the appropriate HTTP method for the given URL. | |
Args: | |
url: The URL of the web interface. | |
Returns: | |
The HTTP method (e.g., "GET", "POST", "PUT", "DELETE"). | |
""" | |
# Use the agent's knowledge to determine the HTTP method. | |
# For example, the agent might know that the URL is for a REST API endpoint that supports CRUD operations. | |
return "GET" | |
def get_headers(url): | |
""" | |
Determines the appropriate headers for the given URL. | |
Args: | |
url: The URL of the web interface. | |
Returns: | |
A dictionary of headers. | |
""" | |
# Use the agent's knowledge to determine the headers. | |
# For example, the agent might know that the web interface requires an "Authorization" header with an API key. | |
return {"Content-Type": "application/json"} | |
# ... (rest of the code) | |
if app_mode == "Toolbox": | |
# Streamlit App | |
st.title("AI Agent Creator") | |
# Sidebar navigation | |
st.sidebar.title("Navigation") | |
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) | |
if app_mode == "AI Agent Creator": | |
# AI Agent Creator | |
st.header("Create an AI Agent from Text") | |
st.subheader("From Text") | |
agent_name = st.text_input("Enter agent name:") | |
text_input = st.text_area("Enter skills (one per line):") | |
if st.button("Create Agent"): | |
agent_prompt = create_agent_from_text(agent_name, text_input) | |
st.success(f"Agent '{agent_name}' created and saved successfully.") | |
st.session_state.available_agents.append(agent_name) | |
elif app_mode == "Tool Box": | |
# Tool Box | |
st.header("AI-Powered Tools") | |
# Chat Interface | |
st.subheader("Chat with CodeCraft") | |
chat_input = st.text_area("Enter your message:") | |
if st.button("Send"): | |
if chat_input.startswith("@"): | |
agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name | |
chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input | |
chat_response = chat_interface_with_agent(chat_input, agent_name) | |
else: | |
chat_response = chat_interface(chat_input) | |
st.session_state.chat_history.append((chat_input, chat_response)) | |
st.write(f"CodeCraft: {chat_response}") | |
# Terminal Interface | |
st.subheader("Terminal") | |
terminal_input = st.text_input("Enter a command:") | |
if st.button("Run"): | |
terminal_output = terminal_interface(terminal_input) | |
st.session_state.terminal_history.append((terminal_input, terminal_output)) | |
st.code(terminal_output, language="bash") | |
# Code Editor Interface | |
st.subheader("Code Editor") | |
code_editor = st.text_area("Write your code:", height=300) | |
if st.button("Format & Lint"): | |
formatted_code, lint_message = code_editor_interface(code_editor) | |
st.code(formatted_code, language="python") | |
st.info(lint_message) | |
# Text Summarization Tool | |
st.subheader("Summarize Text") | |
text_to_summarize = st.text_area("Enter text to summarize:") | |
if st.button("Summarize"): | |
summary = summarize_text(text_to_summarize) | |
st.write(f"Summary: {summary}") | |
# Sentiment Analysis Tool | |
st.subheader("Sentiment Analysis") | |
sentiment_text = st.text_area("Enter text for sentiment analysis:") | |
if st.button("Analyze Sentiment"): | |
sentiment = sentiment_analysis(sentiment_text) | |
st.write(f"Sentiment: {sentiment}") | |
# Text Translation Tool (Code Translation) | |
st.subheader("Translate Code") | |
code_to_translate = st.text_area("Enter code to translate:") | |
input_language = st.text_input("Enter input language (e.g. 'Python'):") | |
output_language = st.text_input("Enter output language (e.g. 'JavaScript'):") | |
if st.button("Translate Code"): | |
translated_code = translate_code(code_to_translate, input_language, output_language) | |
st.code(translated_code, language=output_language.lower()) | |
# Code Generation | |
st.subheader("Code Generation") | |
code_idea = st.text_input("Enter your code idea:") | |
if st.button("Generate Code"): | |
generated_code = generate_code(code_idea) | |
st.code(generated_code, language="python") | |
# Display Preset Commands | |
st.subheader("Preset Commands") | |
preset_commands = { | |
"Create a new project": "create_project('project_name')", | |
"Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')", | |
"Run terminal command": "terminal_interface('command', 'project_name')", | |
"Generate code": "generate_code('code_idea')", | |
"Summarize text": "summarize_text('text')", | |
"Analyze sentiment": "sentiment_analysis('text')", | |
"Translate code": "translate_code('code', 'source_language', 'target_language')", | |
} | |
for command_name, command in preset_commands.items(): | |
st.write(f"{command_name}: `{command}`") | |
elif app_mode == "Workspace Chat App": | |
# Workspace Chat App | |
st.header("Workspace Chat App") | |
# Project Workspace Creation | |
st.subheader("Create a New Project") | |
project_name = st.text_input("Enter project name:") | |
if st.button("Create Project"): | |
workspace_status = workspace_interface(project_name) | |
st.success(workspace_status) | |
# Add Code to Workspace | |
st.subheader("Add Code to Workspace") | |
code_to_add = st.text_area("Enter code to add to workspace:") | |
file_name = st.text_input("Enter file name (e.g. 'app.py'):") | |
if st.button("Add Code"): | |
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name) | |
st.success(add_code_status) | |
# Terminal Interface with Project Context | |
st.subheader("Terminal (Workspace Context)") | |
terminal_input = st.text_input("Enter a command within the workspace:") | |
if st.button("Run Command"): | |
terminal_output = terminal_interface(terminal_input, project_name) | |
st.code(terminal_output, language="bash") | |
# Chat Interface for Guidance | |
st.subheader("Chat with CodeCraft for Guidance") | |
chat_input = st.text_area("Enter your message for guidance:") | |
if st.button("Get Guidance"): | |
chat_response = chat_interface(chat_input) | |
st.session_state.chat_history.append((chat_input, chat_response)) | |
st.write(f"CodeCraft: {chat_response}") | |
# Display Chat History | |
st.subheader("Chat History") | |
for user_input, response in st.session_state.chat_history: | |
st.write(f"User: {user_input}") | |
st.write(f"CodeCraft: {response}") | |
# Display Terminal History | |
st.subheader("Terminal History") | |
for command, output in st.session_state.terminal_history: | |
st.write(f"Command: {command}") | |
st.code(output, language="bash") | |
# Display Projects and Files | |
st.subheader("Workspace Projects") | |
for project, details in st.session_state.workspace_projects.items(): | |
st.write(f"Project: {project}") | |
st.write("Files:") | |
for file in details["files"]: | |
st.write(f"- {file}") | |
try: | |
generator = pipeline("text-generation", model=model_name) | |
generator.tokenizer.pad_token = generator.tokenizer.eos_token | |
generated_response = generator( | |
f"{agent_prompt}\n\nUser: {input_text}\nAgent:", max_length=100, do_sample=True, top_k=50)[0]["generated_text"] | |
return generated_response | |
except Exception as e: | |
return f"Error loading model: {e}" | |
def terminal_interface(command: str, project_name: str = None) -> str: | |
if project_name: | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(project_path): | |
return f"Project {project_name} does not exist." | |
result = subprocess.run( | |
command, shell=True, capture_output=True, text=True, cwd=project_path) | |
else: | |
result = subprocess.run(command, shell=True, capture_output=True, text=True) | |
return result.stdout | |
def code_editor_interface(code: str) -> str: | |
try: | |
formatted_code = black.format_str(code, mode=black.FileMode()) | |
except black.NothingChanged: | |
formatted_code = code | |
result = StringIO() | |
sys.stdout = result | |
sys.stderr = result | |
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True) | |
sys.stdout = sys.__stdout__ | |
sys.stderr = sys.__stderr__ | |
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue() | |
return formatted_code, lint_message | |
def summarize_text(text: str) -> str: | |
summarizer = pipeline("summarization") | |
summary = summarizer(text, max_length=130, min_length=30, do_sample=False) | |
return summary[0]['summary_text'] | |
def sentiment_analysis(text: str) -> str: | |
analyzer = pipeline("sentiment-analysis") | |
result = analyzer(text) | |
return result[0]['label'] | |
def translate_code(code: str, source_language: str, target_language: str) -> str: | |
# Use a Hugging Face translation model instead of OpenAI | |
# Example: English to Spanish | |
translator = pipeline( | |
"translation", model="bartowski/Codestral-22B-v0.1-GGUF") | |
translated_code = translator(code, target_lang=target_language)[0]['translation_text'] | |
return translated_code | |
def generate_code(code_idea: str, model_name: str) -> str: | |
"""Generates code using the selected model.""" | |
try: | |
generator = pipeline('text-generation', model=model_name) | |
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text'] | |
return generated_code | |
except Exception as e: | |
return f"Error generating code: {e}" | |
def chat_interface(input_text: str) -> str: | |
"""Handles general chat interactions with the user.""" | |
# Use a Hugging Face chatbot model or your own logic | |
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium") | |
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text'] | |
return response | |
def workspace_interface(project_name: str) -> str: | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(project_path): | |
os.makedirs(project_path) | |
st.session_state.workspace_projects[project_name] = {'files': []} | |
return f"Project '{project_name}' created successfully." | |
else: | |
return f"Project '{project_name}' already exists." | |
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str: | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(project_path): | |
return f"Project '{project_name}' does not exist." | |
file_path = os.path.join(project_path, file_name) | |
with open(file_path, "w") as file: | |
file.write(code) | |
st.session_state.workspace_projects[project_name]['files'].append(file_name) | |
return f"Code added to '{file_name}' in project '{project_name}'." | |
def create_space_on_hugging_face(api, name, description, public, files, entrypoint="launch.py"): | |
url = f"{hf_hub_url()}spaces/{name}/prepare-repo" | |
headers = {"Authorization": f"Bearer {api.access_token}"} | |
payload = { | |
"public": public, | |
"gitignore_template": "web", | |
"default_branch": "main", | |
"archived": False, | |
"files": [] | |
} | |
for filename, contents in files.items(): | |
data = { | |
"content": contents, | |
"path": filename, | |
"encoding": "utf-8", | |
"mode": "overwrite" | |
} | |
payload["files"].append(data) | |
response = requests.post(url, json=payload, headers=headers) | |
response.raise_for_status() | |
location = response.headers.get("Location") | |
# wait_for_processing(location, api) # You might need to implement this if it's not already defined | |
return Repository(name=name, api=api) | |
# Streamlit App | |
st.title("AI Agent Creator") | |
# Sidebar navigation | |
st.sidebar.title("Navigation") | |
app_mode = st.sidebar.selectbox( | |
"Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) | |
if app_mode == "AI Agent Creator": | |
# AI Agent Creator | |
st.header("Create an AI Agent from Text") | |
st.subheader("From Text") | |
agent_name = st.text_input("Enter agent name:") | |
text_input = st.text_area("Enter skills (one per line):") | |
if st.button("Create Agent"): | |
agent_prompt = create_agent_from_text(agent_name, text_input) | |
st.success(f"Agent '{agent_name}' created and saved successfully.") | |
st.session_state.available_agents.append(agent_name) | |
elif app_mode == "Tool Box": | |
# Tool Box | |
st.header("AI-Powered Tools") | |
# Chat Interface | |
st.subheader("Chat with CodeCraft") | |
chat_input = st.text_area("Enter your message:") | |
if st.button("Send"): | |
chat_response = chat_interface(chat_input) | |
st.session_state.chat_history.append((chat_input, chat_response)) | |
st.write(f"CodeCraft: {chat_response}") | |
# Terminal Interface | |
st.subheader("Terminal") | |
terminal_input = st.text_input("Enter a command:") | |
if st.button("Run"): | |
terminal_output = terminal_interface(terminal_input) | |
st.session_state.terminal_history.append( | |
(terminal_input, terminal_output)) | |
st.code(terminal_output, language="bash") | |
# Code Editor Interface | |
st.subheader("Code Editor") | |
code_editor = st.text_area("Write your code:", height=300) | |
if st.button("Format & Lint"): | |
formatted_code, lint_message = code_editor_interface(code_editor) | |
st.code(formatted_code, language="python") | |
st.info(lint_message) | |
# Text Summarization Tool | |
st.subheader("Summarize Text") | |
text_to_summarize = st.text_area("Enter text to summarize:") | |
if st.button("Summarize"): | |
summary = summarize_text(text_to_summarize) | |
st.write(f"Summary: {summary}") | |
# Sentiment Analysis Tool | |
st.subheader("Sentiment Analysis") | |
sentiment_text = st.text_area("Enter text for sentiment analysis:") | |
if st.button("Analyze Sentiment"): | |
sentiment = sentiment_analysis(sentiment_text) | |
st.write(f"Sentiment: {sentiment}") | |
# Text Translation Tool (Code Translation) | |
st.subheader("Translate Code") | |
code_to_translate = st.text_area("Enter code to translate:") | |
source_language = st.text_input("Enter source language (e.g., 'Python'):") | |
target_language = st.text_input( | |
"Enter target language (e.g., 'JavaScript'):") | |
if st.button("Translate Code"): | |
translated_code = translate_code( | |
code_to_translate, source_language, target_language) | |
st.code(translated_code, language=target_language.lower()) | |
# Code Generation | |
st.subheader("Code Generation") | |
code_idea = st.text_input("Enter your code idea:") | |
if st.button("Generate Code"): | |
generated_code = generate_code(code_idea) | |
st.code(generated_code, language="python") | |
elif app_mode == "Workspace Chat App": | |
# Workspace Chat App | |
st.header("Workspace Chat App") | |
# Project Workspace Creation | |
st.subheader("Create a New Project") | |
project_name = st.text_input("Enter project name:") | |
if st.button("Create Project"): | |
workspace_status = workspace_interface(project_name) | |
st.success(workspace_status) | |
# Automatically create requirements.txt and app.py | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
requirements_file = os.path.join(project_path, "requirements.txt") | |
if not os.path.exists(requirements_file): | |
with open(requirements_file, "w") as f: | |
f.write("# Add your project's dependencies here\n") | |
app_file = os.path.join(project_path, "app.py") | |
if not os.path.exists(app_file): | |
with open(app_file, "w") as f: | |
f.write("# Your project's main application logic goes here\n") | |
# Add Code to Workspace | |
st.subheader("Add Code to Workspace") | |
code_to_add = st.text_area("Enter code to add to workspace:") | |
file_name = st.text_input("Enter file name (e.g., 'app.py'):") | |
if st.button("Add Code"): | |
add_code_status = add_code_to_workspace( | |
project_name, code_to_add, file_name) | |
st.session_state.terminal_history.append( | |
(f"Add Code: {code_to_add}", add_code_status)) | |
st.success(add_code_status) | |
# Terminal Interface with Project Context | |
st.subheader("Terminal (Workspace Context)") | |
terminal_input = st.text_input("Enter a command within the workspace:") | |
if st.button("Run Command"): | |
terminal_output = terminal_interface(terminal_input, project_name) | |
st.session_state.terminal_history.append( | |
(terminal_input, terminal_output)) | |
st.code(terminal_output, language="bash") | |
# Chat Interface for Guidance | |
st.subheader("Chat with CodeCraft for Guidance") | |
chat_input = st.text_area("Enter your message for guidance:") | |
if st.button("Get Guidance"): | |
chat_response = chat_interface(chat_input) | |
st.session_state.chat_history.append((chat_input, chat_response)) | |
st.write(f"CodeCraft: {chat_response}") | |
# Display Chat History | |
st.subheader("Chat History") | |
for user_input, response in st.session_state.chat_history: | |
st.write(f"User: {user_input}") | |
st.write(f"CodeCraft: {response}") | |
# Display Terminal History | |
st.subheader("Terminal History") | |
for command, output in st.session_state.terminal_history: | |
st.write(f"Command: {command}") | |
st.code(output, language="bash") | |
# Display Projects and Files | |
st.subheader("Workspace Projects") | |
for project, details in st.session_state.workspace_projects.items(): | |
st.write(f"Project: {project}") | |
for file in details['files']: | |
st.write(f" - {file}") | |
# Chat with AI Agents | |
st.subheader("Chat with AI Agents") | |
selected_agent = st.selectbox( | |
"Select an AI agent", st.session_state.available_agents) | |
agent_chat_input = st.text_area("Enter your message for the agent:") | |
if st.button("Send to Agent"): | |
agent_chat_response = chat_interface_with_agent( | |
agent_chat_input, selected_agent) | |
st.session_state.chat_history.append( | |
(agent_chat_input, agent_chat_response)) | |
st.write(f"{selected_agent}: {agent_chat_response}") | |
# Code Generation | |
st.subheader("Code Generation") | |
code_idea = st.text_input("Enter your code idea:") | |
# Model Selection Menu | |
selected_model = st.selectbox( | |
"Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS) | |
if st.button("Generate Code"): | |
generated_code = generate_code(code_idea, selected_model) | |
st.code(generated_code, language="python") | |
# Automate Build Process | |
st.subheader("Automate Build Process") | |
if st.button("Automate"): | |
# Load the agent without skills for now | |
agent = AIAgent(selected_agent, "", []) | |
summary, next_step = agent.autonomous_build( | |
st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model) | |
st.write("Autonomous Build Summary:") | |
st.write(summary) | |
st.write("Next Step:") | |
st.write(next_step) | |
# If everything went well, proceed to deploy the Space | |
if agent._hf_api and agent.has_valid_hf_token(): | |
agent.deploy_built_space_to_hf() | |
# Use the hf_token to interact with the Hugging Face API | |
api = HfApi(token="hf_token") # Function to create a Space on Hugging Face | |
create_space_on_hugging_face(api, agent.name, agent.description, True, get_built_space_files()) | |