Spaces:
Running
Running
import gradio as gr | |
import os | |
import subprocess | |
import random | |
import string | |
from huggingface_hub import cached_download, hf_hub_url | |
from transformers import pipeline | |
# Define functions for each feature | |
# 1. Chat Interface | |
def chat_interface(input_text, history): | |
"""Handles user input in the chat interface. | |
Args: | |
input_text: User's input text. | |
history: Chat history. | |
Returns: | |
A tuple containing the updated chat history and the chatbot's response. | |
""" | |
# Load the appropriate language model from Hugging Face | |
model_name = 'google/flan-t5-xl' # Choose a suitable model | |
model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json') | |
model_path = cached_download(model_url) | |
generator = pipeline('text-generation', model=model_path) | |
# Generate chatbot response | |
response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text'] | |
# Update chat history | |
history.append((input_text, response)) | |
return history, response | |
# 2. Terminal | |
def terminal_interface(command, history): | |
"""Executes commands in the terminal. | |
Args: | |
command: User's command. | |
history: Terminal command history. | |
Returns: | |
A tuple containing the updated command history and the terminal output. | |
""" | |
# Execute command | |
try: | |
process = subprocess.run(command.split(), capture_output=True, text=True) | |
output = process.stdout | |
except Exception as e: | |
output = f'Error: {e}' | |
# Update command history | |
history.append((command, output)) | |
return history, output | |
# 3. Code Editor | |
def code_editor_interface(code): | |
"""Provides code completion, formatting, and linting in the code editor. | |
Args: | |
code: User's code. | |
Returns: | |
Formatted and linted code. | |
""" | |
# Implement code completion, formatting, and linting using appropriate libraries | |
# For example, you can use the 'black' library for code formatting | |
# and 'pylint' for linting | |
# ... | |
return code | |
# 4. Workspace | |
def workspace_interface(project_name, history): | |
"""Manages projects, files, and resources in the workspace. | |
Args: | |
project_name: Name of the new project. | |
history: Workspace history. | |
Returns: | |
A tuple containing the updated workspace history and project creation status. | |
""" | |
# Create project directory | |
try: | |
os.makedirs(os.path.join('projects', project_name)) | |
status = f'Project \"{project_name}\" created successfully.' | |
except FileExistsError: | |
status = f'Project \"{project_name}\" already exists.' | |
# Update workspace history | |
history.append((project_name, status)) | |
return history, status | |
# 5. AI-Infused Tools | |
# Define custom AI-powered tools using Hugging Face models | |
# Example: Text summarization tool | |
def summarize_text(text): | |
"""Summarizes a given text using a Hugging Face model. | |
Args: | |
text: Text to be summarized. | |
Returns: | |
Summarized text. | |
""" | |
summarizer = pipeline('summarization', model='facebook/bart-large-cnn') | |
summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text'] | |
return summary | |
# 6. Hugging Face Integration | |
# Define functions for accessing, training, and deploying models | |
# Example: Load a pre-trained model | |
def load_model(model_name): | |
"""Loads a pre-trained model from Hugging Face. | |
Args: | |
model_name: Name of the model to be loaded. | |
Returns: | |
The loaded model. | |
""" | |
model_url = hf_hub_url(repo_id=model_name, revision='main') | |
model = cached_download(model_url) | |
return model | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
# Chat interface | |
chat_history = gr.State([]) # Initialize chat history | |
chat_input = gr.Textbox(label="Chat with CodeCraft", lines=5) | |
chat_output = gr.Textbox(label="CodeCraft Response", lines=5) | |
chat_button = gr.Button(value="Send") | |
chat_button.click(chat_interface, inputs=[chat_input, chat_history], outputs=[chat_history, chat_output]) | |
# Terminal interface | |
terminal_history = gr.State([]) # Initialize terminal history | |
terminal_input = gr.Textbox(label="Enter Command", lines=1) | |
terminal_output = gr.Textbox(label="Terminal Output", lines=5) | |
terminal_button = gr.Button(value="Run") | |
terminal_button.click(terminal_interface, inputs=[terminal_input, terminal_history], outputs=[terminal_history, terminal_output]) | |
# Code editor interface | |
code_editor = gr.Code(label="Code Editor", lines=10, language="python") | |
code_editor.change(code_editor_interface, inputs=code_editor, outputs=code_editor) | |
# Workspace interface | |
workspace_history = gr.State([]) # Initialize workspace history | |
workspace_input = gr.Textbox(label="Project Name", lines=1) | |
workspace_output = gr.Textbox(label="Workspace Data", lines=5) | |
workspace_button = gr.Button(value="Create Project") | |
workspace_button.click(workspace_interface, inputs=[workspace_input, workspace_history], outputs=[workspace_history, workspace_output]) | |
# AI-Infused Tools | |
text_input = gr.Textbox(label="Enter text to summarize") | |
summary_output = gr.Textbox(label="Summarized Text") | |
summarize_button = gr.Button(value="Summarize") | |
summarize_button.click(summarize_text, inputs=text_input, outputs=summary_output) | |
# Launch Gradio app | |
demo.launch(share=True, server_name='0.0.0.0') |