Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,13 @@ import os
|
|
3 |
import subprocess
|
4 |
import random
|
5 |
import string
|
6 |
-
from huggingface_hub import cached_download, hf_hub_url
|
7 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
8 |
import black
|
9 |
import pylint
|
|
|
|
|
|
|
10 |
|
11 |
# Define functions for each feature
|
12 |
|
@@ -148,11 +151,43 @@ def generate_code(idea):
|
|
148 |
|
149 |
return generated_code
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
# Streamlit App
|
152 |
st.title("CodeCraft: Your AI-Powered Development Toolkit")
|
153 |
|
154 |
# Workspace Selection
|
155 |
-
st.sidebar.header("Select Workspace")
|
156 |
project_name = st.sidebar.selectbox("Choose a project", os.listdir('projects'))
|
157 |
|
158 |
# Chat Interface
|
@@ -179,11 +214,29 @@ if st.button("Format & Lint"):
|
|
179 |
|
180 |
# AI-Infused Tools
|
181 |
st.header("AI-Powered Tools")
|
|
|
|
|
|
|
182 |
text_to_summarize = st.text_area("Enter text to summarize:")
|
183 |
if st.button("Summarize"):
|
184 |
summary = summarize_text(text_to_summarize)
|
185 |
st.write(f"Summary: {summary}")
|
186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
# Code Generation
|
188 |
st.header("Code Generation")
|
189 |
code_idea = st.text_input("Enter your code idea:")
|
@@ -194,11 +247,16 @@ if st.button("Generate Code"):
|
|
194 |
except Exception as e:
|
195 |
st.error(f"Error generating code: {e}")
|
196 |
|
197 |
-
# Launch Chat App
|
198 |
if st.button("Launch Chat App"):
|
199 |
# Get the current working directory
|
200 |
cwd = os.getcwd()
|
201 |
|
|
|
|
|
|
|
|
|
|
|
202 |
# Construct the command to launch the chat app
|
203 |
command = f"cd projects/{project_name} && streamlit run chat_app.py"
|
204 |
|
|
|
3 |
import subprocess
|
4 |
import random
|
5 |
import string
|
6 |
+
from huggingface_hub import cached_download, hf_hub_url, hf_hub_token
|
7 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
8 |
import black
|
9 |
import pylint
|
10 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
11 |
+
from transformers import pipeline
|
12 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
13 |
|
14 |
# Define functions for each feature
|
15 |
|
|
|
151 |
|
152 |
return generated_code
|
153 |
|
154 |
+
# 7. Sentiment Analysis
|
155 |
+
def analyze_sentiment(text):
|
156 |
+
"""Analyzes the sentiment of a given text.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
text: The text to analyze.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
A dictionary containing the sentiment label and score.
|
163 |
+
"""
|
164 |
+
model_name = 'distilbert-base-uncased-finetuned-sst-3-literal-labels'
|
165 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
166 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
167 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
168 |
+
result = classifier(text)[0]
|
169 |
+
return result
|
170 |
+
|
171 |
+
# 8. Text Translation
|
172 |
+
def translate_text(text, target_language):
|
173 |
+
"""Translates a given text to the specified target language.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
text: The text to translate.
|
177 |
+
target_language: The target language code (e.g., 'fr' for French, 'es' for Spanish).
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
The translated text.
|
181 |
+
"""
|
182 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") # Example: English to Spanish
|
183 |
+
translation = translator(text, target_lang=target_language)[0]['translation_text']
|
184 |
+
return translation
|
185 |
+
|
186 |
# Streamlit App
|
187 |
st.title("CodeCraft: Your AI-Powered Development Toolkit")
|
188 |
|
189 |
# Workspace Selection
|
190 |
+
st.sidebar.header("Select Workspace")
|
191 |
project_name = st.sidebar.selectbox("Choose a project", os.listdir('projects'))
|
192 |
|
193 |
# Chat Interface
|
|
|
214 |
|
215 |
# AI-Infused Tools
|
216 |
st.header("AI-Powered Tools")
|
217 |
+
|
218 |
+
# Text Summarization
|
219 |
+
st.subheader("Text Summarization")
|
220 |
text_to_summarize = st.text_area("Enter text to summarize:")
|
221 |
if st.button("Summarize"):
|
222 |
summary = summarize_text(text_to_summarize)
|
223 |
st.write(f"Summary: {summary}")
|
224 |
|
225 |
+
# Sentiment Analysis
|
226 |
+
st.subheader("Sentiment Analysis")
|
227 |
+
text_to_analyze = st.text_area("Enter text to analyze sentiment:")
|
228 |
+
if st.button("Analyze Sentiment"):
|
229 |
+
sentiment_result = analyze_sentiment(text_to_analyze)
|
230 |
+
st.write(f"Sentiment: {sentiment_result['label']}, Score: {sentiment_result['score']}")
|
231 |
+
|
232 |
+
# Text Translation
|
233 |
+
st.subheader("Text Translation")
|
234 |
+
text_to_translate = st.text_area("Enter text to translate:")
|
235 |
+
target_language = st.selectbox("Choose target language", ['fr', 'es', 'de', 'zh-CN']) # Example languages
|
236 |
+
if st.button("Translate"):
|
237 |
+
translation = translate_text(text_to_translate, target_language)
|
238 |
+
st.write(f"Translation: {translation}")
|
239 |
+
|
240 |
# Code Generation
|
241 |
st.header("Code Generation")
|
242 |
code_idea = st.text_input("Enter your code idea:")
|
|
|
247 |
except Exception as e:
|
248 |
st.error(f"Error generating code: {e}")
|
249 |
|
250 |
+
# Launch Chat App (with Authentication)
|
251 |
if st.button("Launch Chat App"):
|
252 |
# Get the current working directory
|
253 |
cwd = os.getcwd()
|
254 |
|
255 |
+
# User Authentication
|
256 |
+
hf_token = st.text_input("Enter your Hugging Face Token:")
|
257 |
+
if hf_token:
|
258 |
+
hf_hub_token(hf_token)
|
259 |
+
|
260 |
# Construct the command to launch the chat app
|
261 |
command = f"cd projects/{project_name} && streamlit run chat_app.py"
|
262 |
|