import os import subprocess import sys import streamlit as st import black from pylint import lint from io import StringIO import logging import atexit import time from datetime import datetime from transformers import AutoTokenizer, AutoModelForCausalLM import torch HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit" PROJECT_ROOT = "projects" AGENT_DIRECTORY = "agents" # Initialize session state def initialize_session_state(): if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if 'terminal_history' not in st.session_state: st.session_state.terminal_history = [] if 'workspace_projects' not in st.session_state: st.session_state.workspace_projects = {} if 'available_agents' not in st.session_state: st.session_state.available_agents = [] if 'current_state' not in st.session_state: st.session_state.current_state = { 'toolbox': {}, 'workspace_chat': {} } initialize_session_state() class InstructModel: def __init__(self): """Initialize the Mixtral-8x7B-Instruct model""" self.model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1" self.load_model() def load_model(self): """Load the model and tokenizer""" try: self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16, device_map="auto" ) except Exception as e: raise EnvironmentError(f"Failed to load model: {str(e)}") def generate_response(self, prompt: str) -> str: """Generate a response using the Mixtral model""" formatted_prompt = self.format_prompt(prompt) inputs = self.tokenizer(formatted_prompt, return_tensors="pt").to(self.model.device) outputs = self.model.generate( inputs.input_ids, max_new_tokens=512, temperature=0.7, top_p=0.95, do_sample=True, pad_token_id=self.tokenizer.eos_token_id ) return self.clean_response(outputs, formatted_prompt) def format_prompt(self, prompt: str) -> str: """Format the prompt for the model""" return f"[INST] {prompt} [/INST]" def clean_response(self, outputs, formatted_prompt: str) -> str: """Decode and clean up the model's response""" response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return response.replace(formatted_prompt, "").strip() def __del__(self): """Cleanup when the model is no longer needed""" try: del self.model del self.tokenizer torch.cuda.empty_cache() except: pass class AIAgent: def __init__(self, name, description, skills): self.name = name self.description = description self.skills = skills def create_agent_prompt(self): skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) return f""" As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas: {skills_str} I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter. """ def autonomous_build(self, chat_history, workspace_projects): summary = self.summarize_chat_history(chat_history) summary += "\n\nWorkspace Projects:\n" + self.summarize_workspace_projects(workspace_projects) next_step = "Based on the current state, the next logical step is to implement the main application logic." return summary, next_step def summarize_chat_history(self, chat_history): return "Chat History:\n" + "\n".join([f":User {u}\nAgent: {a}" for u, a in chat_history]) def summarize_workspace_projects(self, workspace_projects): return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) def save_agent_to_file(agent): os.makedirs(AGENT_DIRECTORY, exist_ok=True) file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt") config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt") with open(file_path, "w") as file: file.write(agent.create_agent_prompt()) with open(config_path, "w") as file: file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}") st.session_state.available_agents.append(agent.name) commit_and_push_changes(f"Add agent {agent.name}") def load_agent_prompt(agent_name): file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") if os.path.exists(file_path): with open(file_path, "r") as file: return file.read() return None def create_agent_from_text(name, text): skills = text.split('\n') agent = AIAgent(name, "AI agent created from text input.", skills) save_agent_to_file(agent) return agent.create_agent_prompt() def chat_interface(input_text): """Handles chat interactions without a specific agent.""" model = InstructModel() return model.generate_response(f":User {input_text}\nAI:") def chat_interface_with_agent(input_text, agent_name): agent_prompt = load_agent_prompt(agent_name) if agent_prompt is None: return f"Agent {agent_name} not found." model = InstructModel() combined_input = f"{agent_prompt}\n\n:User {input_text}\nAgent:" return model.generate_response(combined_input) def workspace_interface(project_name): project_path = os.path.join(PROJECT_ROOT, project_name) os.makedirs(PROJECT_ROOT, exist_ok=True) if not os.path.exists(project_path): os.makedirs(project_path) st.session_state.workspace_projects[project_name] = {"files": []} st.session_state.current_state['workspace_chat']['project_name'] = project_name commit_and_push_changes(f"Create project {project_name}") return f"Project {project_name} created successfully." return f"Project {project_name} already exists." def add_code_to_workspace(project_name, code, file_name): project_path = os.path.join(PROJECT_ROOT, project_name) if os.path.exists(project_path): file_path = os.path.join(project_path, file_name) with open(file_path, "w") as file: file.write(code) st.session_state.workspace_projects[project_name]["files"].append(file_name) st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code} commit_and_push_changes(f"Add code to {file_name} in project {project_name}") return f"Code added to {file_name} in project {project_name} successfully." return f"Project {project_name} does not exist." def terminal_interface(command, project_name=None): if project_name: project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): return f"Project {project_name} does not exist." result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True) else: result = subprocess.run(command, shell=True, capture_output=True, text=True) output = result.stdout if result.returncode == 0 else result.stderr st.session_state.current_state['toolbox']['terminal_output'] = output return output def code_editor_interface(code): formatted_code = format_code(code) lint_message = lint_code(formatted_code) return formatted_code, lint_message def format_code(code): try: return black.format_str(code, mode=black.FileMode()) except black.NothingChanged: return code except Exception as e: return None, f"Error formatting code with black: {e}" def lint_code(code): result = StringIO() sys.stdout = result sys.stderr = result try: (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True) return pylint_stdout.getvalue() + pylint_stderr.getvalue() except Exception as e: return None, f"Error linting code with pylint: {e}" finally: sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ def translate_code(code, input_language, output_language): model = InstructModel() prompt = f"Translate the following {input_language} code to {output_language}:\n\n{code}" return model.generate_response(prompt) def generate_code(code_idea): model = InstructModel() prompt = f"Generate code for the following idea:\n\n{code_idea}" generated_code = model.generate_response(prompt) st.session_state.current_state['toolbox']['generated_code'] = generated_code return generated_code def commit_and_push_changes(commit_message): """Commits and pushes changes to the Hugging Face repository.""" try: subprocess.run(["git", "add", "."], check=True, capture_output=True, text=True) subprocess.run(["git", "commit", "-m", commit_message], check=True, capture_output=True, text=True) subprocess.run(["git", "push"], check=True, capture_output=True, text=True) except subprocess.CalledProcessError as e: st.error(f"Git command failed: {e.stderr}") except FileNotFoundError: st.error("Git not found. Please ensure Git is installed and configured.") # Streamlit App st.title("AI Agent Creator") # Sidebar navigation st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) if app_mode == "AI Agent Creator": st.header("Create an AI Agent from Text") agent_name = st.text_input("Enter agent name:") text_input = st.text_area("Enter skills (one per line):") if st.button("Create Agent"): agent_prompt = create_agent_from_text(agent_name, text_input) st.success(f"Agent '{agent_name}' created and saved successfully.") st.session_state.available_agents.append(agent_name) elif app_mode == "Tool Box": st.header("AI-Powered Tools") # Chat Interface st.subheader("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): if chat_input.startswith("@"): agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input chat_response = chat_interface_with_agent(chat_input, agent_name) else: chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Terminal Interface st.subheader("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): terminal_output = terminal_interface(terminal_input) st.session_state.terminal_history.append((terminal_input, terminal_output)) st.code(terminal_output, language="bash") # Code Editor Interface st.subheader("Code Editor") code_editor = st.text_area("Write your code:", height=300) if st.button("Format & Lint"): formatted_code, lint_message = code_editor_interface(code_editor) st.code(formatted_code, language="python") st.info(lint_message) # Text Translation Tool (Code Translation) st.subheader("Translate Code") code_to_translate = st.text_area("Enter code to translate:") source_language = st.text_input("Enter source language (e.g., 'Python'):") target_language = st.text_input("Enter target language (e.g., 'JavaScript'):") if st.button("Translate Code"): translated_code = translate_code(code_to_translate, source_language, target_language) st.code(translated_code, language=target_language.lower()) # Code Generation st.subheader("Code Generation") code_idea = st.text_input("Enter your code idea:") if st.button("Generate Code"): generated_code = generate_code(code_idea) st.code(generated_code, language="python") elif app_mode == "Workspace Chat App": st.header("Workspace Chat App") # Project Workspace Creation st.subheader("Create a New Project") project_name = st.text_input("Enter project name:") if st.button("Create Project"): workspace_status = workspace_interface(project_name) st.success(workspace_status) # Add Code to Workspace st.subheader("Add Code to Workspace") code_to_add = st.text_area("Enter code to add to workspace:") file_name = st.text_input("Enter file name (e.g., 'app.py'):") if st.button("Add Code"): add_code_status = add_code_to_workspace(project_name, code_to_add, file_name) st.success(add_code_status) # Terminal Interface with Project Context st.subheader("Terminal (Workspace Context)") terminal_input = st.text_input("Enter a command within the workspace:") if st.button("Run Command"): terminal_output = terminal_interface(terminal_input, project_name) st.code(terminal_output, language="bash") # Chat Interface for Guidance st.subheader("Chat with CodeCraft for Guidance") chat_input = st.text_area("Enter your message for guidance:") if st.button("Get Guidance"): chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Display Chat History st.subheader("Chat History") for user_input, response in st.session_state.chat_history: st.write(f":User {user_input}") st.write(f"CodeCraft: {response}") # Display Terminal History st.subheader("Terminal History") for command, output in st.session_state.terminal_history: st.write(f"Command: {command}") st.code(output, language="bash") # Display Projects and Files st.subheader("Workspace Projects") for project, details in st.session_state.workspace_projects.items(): st.write(f"Project: {project }") for file in details['files']: st.write(f" - {file}") # Chat with AI Agents st.subheader("Chat with AI Agents") selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents) agent_chat_input = st.text_area("Enter your message for the agent:") if st.button("Send to Agent"): agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent) st.session_state.chat_history.append((agent_chat_input, agent_chat_response)) st.write(f"{selected_agent}: {agent_chat_response}") # Automate Build Process st.subheader("Automate Build Process") if st.button("Automate"): agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects) st.write("Autonomous Build Summary:") st.write(summary) st.write("Next Step:") st.write(next_step)