import os from transformers import pipeline HF_TOKEN = os.environ.get("HF_TOKEN") class CodeGenerator: def __init__(self, model_name='bigscience/T0_3B'): self.generator = pipeline('text-generation', model=model_name) def generate_code(self, task_description): """ Generates code based on the provided task description using the specified language model. Parameters: task_description (str): The task description or prompt for generating the code. Returns: str: The generated code. """ return self._generate_code_from_model(task_description) def _generate_code_from_model(self, input_text): """ Internal method to generate code from the model. Parameters: input_text (str): The input text for code generation. Returns: str: The code generated by the language model. """ return self.generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text'] def main(): task_description = "Develop an app that allows users to search for and modify files on a remote server using the SSH protocol" code_generator = CodeGenerator() generated_code = code_generator.generate_code(task_description) print(generated_code) if __name__ == "__main__": main()