ruslanmv commited on
Commit
ed59139
·
verified ·
1 Parent(s): 5f2a839

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -3,16 +3,25 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3
  import torch
4
  import spaces
5
 
 
 
 
 
6
  #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
 
7
  #print(f"Using device: {device}")
8
- device="cuda"
 
 
 
9
  model_name = "ruslanmv/Medical-Llama3-8B"
10
- device_map = 'auto'
11
- model = AutoModelForCausalLM.from_pretrained(model_name)
12
- tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
13
  tokenizer.pad_token = tokenizer.eos_token
14
 
15
- @spaces.GPU # Decorate the askme function with @spaces.GPU
16
  def askme(symptoms, question):
17
  sys_message = '''\
18
  You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
@@ -21,7 +30,7 @@ def askme(symptoms, question):
21
  content = symptoms + " " + question
22
  messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": content}]
23
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
24
- inputs = tokenizer(prompt, return_tensors="pt").to(device)
25
  outputs = model.generate(**inputs, max_new_tokens=200, use_cache=True)
26
  response_text = tokenizer.batch_decode(outputs)[0].strip()
27
  answer = response_text.split('<|im_start|>assistant')[-1].strip()
 
3
  import torch
4
  import spaces
5
 
6
+ IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
7
+ IS_SPACE = os.environ.get("SPACE_ID", None) is not None
8
+
9
+ #device = "cuda" if torch.cuda.is_available() else "cpu"
10
  #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+ #dtype = torch.float16
12
+ LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
13
  #print(f"Using device: {device}")
14
+ #print(f"Using dtype: {dtype}")
15
+ print(f"low memory: {LOW_MEMORY}")
16
+
17
+ device = "cuda"
18
  model_name = "ruslanmv/Medical-Llama3-8B"
19
+ # Move model and tokenizer to the CUDA device
20
+ model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
21
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True).to(device)
22
  tokenizer.pad_token = tokenizer.eos_token
23
 
24
+ @spaces.GPU
25
  def askme(symptoms, question):
26
  sys_message = '''\
27
  You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
 
30
  content = symptoms + " " + question
31
  messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": content}]
32
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
33
+ inputs = tokenizer(prompt, return_tensors="pt").to(device) # Ensure inputs are on CUDA device
34
  outputs = model.generate(**inputs, max_new_tokens=200, use_cache=True)
35
  response_text = tokenizer.batch_decode(outputs)[0].strip()
36
  answer = response_text.split('<|im_start|>assistant')[-1].strip()