Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import spaces | |
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") | |
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
model.to("cuda:0") | |
def bot_streaming(message, history): | |
print(message) | |
if message["files"]: | |
image = message["files"][-1]["path"] | |
else: | |
# if there's no image uploaded for this turn, look for images in the past turns | |
# kept inside tuples, take the last one | |
for hist in history: | |
if type(hist[0])==tuple: | |
image = hist[0][0] | |
prompt=f"[INST] <image>\n{message['text']} [/INST]" | |
image = Image.open(image).convert("RGB") | |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True}) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100) | |
generated_text = "" | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
text_prompt =f"[INST] \n{message['text']} [/INST]" | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
generated_text_without_prompt = buffer[len(text_prompt):] | |
time.sleep(0.04) | |
yield generated_text_without_prompt | |
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Next", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, | |
{"text": "How to make this pastry?", "files":["./baklava.png"]}], | |
description="Try [LLaVA Next](https://huggingface.co/papers/2310.03744) in this demo. Upload an image and start chatting about it, or simply try one of the examples below.", | |
stop_btn="Stop Generation", multimodal=True) | |
demo.launch(debug=True) |