File size: 11,472 Bytes
b36de75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
MambaOut models for image classification.
Some implementations are modified from:
timm (https://github.com/rwightman/pytorch-image-models),
MetaFormer (https://github.com/sail-sg/metaformer),
InceptionNeXt (https://github.com/sail-sg/inceptionnext)
"""
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': 1.0, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    'mambaout_femto': _cfg(
        url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_femto.pth'),
    'mambaout_tiny': _cfg(
        url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_tiny.pth'),
    'mambaout_small': _cfg(
        url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_small.pth'),
    'mambaout_base': _cfg(
        url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'),
}


class StemLayer(nn.Module):
    r""" Code modified from InternImage:
        https://github.com/OpenGVLab/InternImage
    """

    def __init__(self,
                 in_channels=3,
                 out_channels=96,
                 act_layer=nn.GELU,
                 norm_layer=partial(nn.LayerNorm, eps=1e-6)):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels,
                               out_channels // 2,
                               kernel_size=3,
                               stride=2,
                               padding=1)
        self.norm1 = norm_layer(out_channels // 2)
        self.act = act_layer()
        self.conv2 = nn.Conv2d(out_channels // 2,
                               out_channels,
                               kernel_size=3,
                               stride=2,
                               padding=1)
        self.norm2 = norm_layer(out_channels)

    def forward(self, x):
        x = self.conv1(x)
        x = x.permute(0, 2, 3, 1)
        x = self.norm1(x)
        x = x.permute(0, 3, 1, 2)
        x = self.act(x)
        x = self.conv2(x)
        x = x.permute(0, 2, 3, 1)
        x = self.norm2(x)
        return x


class DownsampleLayer(nn.Module):
    r""" Code modified from InternImage:
        https://github.com/OpenGVLab/InternImage
    """
    def __init__(self, in_channels=96, out_channels=198, norm_layer=partial(nn.LayerNorm, eps=1e-6)):
        super().__init__()
        self.conv = nn.Conv2d(in_channels,
                              out_channels,
                              kernel_size=3,
                              stride=2,
                              padding=1)
        self.norm = norm_layer(out_channels)

    def forward(self, x):
        x = self.conv(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
        x = self.norm(x)
        return x


class MlpHead(nn.Module):
    """ MLP classification head
    """
    def __init__(self, dim, num_classes=1000, act_layer=nn.GELU, mlp_ratio=4,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), head_dropout=0., bias=True):
        super().__init__()
        hidden_features = int(mlp_ratio * dim)
        self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
        self.act = act_layer()
        self.norm = norm_layer(hidden_features)
        self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
        self.head_dropout = nn.Dropout(head_dropout)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.norm(x)
        x = self.head_dropout(x)
        x = self.fc2(x)
        return x


class GatedCNNBlock(nn.Module):
    r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083
    Args: 
        conv_ratio: control the number of channels to conduct depthwise convolution.
            Conduct convolution on partial channels can improve paraitcal efficiency.
            The idea of partical channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and 
            also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667)
    """
    def __init__(self, dim, expension_ratio=8/3, kernel_size=7, conv_ratio=1.0,
                 norm_layer=partial(nn.LayerNorm,eps=1e-6), 
                 act_layer=nn.GELU,
                 drop_path=0.,
                 **kwargs):
        super().__init__()
        self.norm = norm_layer(dim)
        hidden = int(expension_ratio * dim)
        self.fc1 = nn.Linear(dim, hidden * 2)
        self.act = act_layer()
        conv_channels = int(conv_ratio * dim)
        self.split_indices = (hidden, hidden - conv_channels, conv_channels)
        self.conv = nn.Conv2d(conv_channels, conv_channels, kernel_size=kernel_size, padding=kernel_size//2, groups=conv_channels)
        self.fc2 = nn.Linear(hidden, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x # [B, H, W, C]
        x = self.norm(x)
        g, i, c = torch.split(self.fc1(x), self.split_indices, dim=-1)
        c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
        c = self.conv(c)
        c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
        x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1))
        x = self.drop_path(x)
        return x + shortcut

r"""
downsampling (stem) for the first stage is two layer of conv with k3, s2 and p1
downsamplings for the last 3 stages is a layer of conv with k3, s2 and p1
DOWNSAMPLE_LAYERS_FOUR_STAGES format: [Downsampling, Downsampling, Downsampling, Downsampling]
use `partial` to specify some arguments
"""
DOWNSAMPLE_LAYERS_FOUR_STAGES = [StemLayer] + [DownsampleLayer]*3


class MambaOut(nn.Module):
    r""" MetaFormer
        A PyTorch impl of : `MetaFormer Baselines for Vision`  -
          https://arxiv.org/abs/2210.13452

    Args:
        in_chans (int): Number of input image channels. Default: 3.
        num_classes (int): Number of classes for classification head. Default: 1000.
        depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3].
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576].
        downsample_layers: (list or tuple): Downsampling layers before each stage.
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6).
        head_fn: classification head. Default: nn.Linear.
        head_dropout (float): dropout for MLP classifier. Default: 0.
    """
    def __init__(self, in_chans=3, num_classes=1000, 
                 depths=[3, 3, 9, 3],
                 dims=[96, 192, 384, 576],
                 downsample_layers=DOWNSAMPLE_LAYERS_FOUR_STAGES,
                 norm_layer=partial(nn.LayerNorm, eps=1e-6),
                 act_layer=nn.GELU,
                 conv_ratio=1.0,
                 kernel_size=7,
                 drop_path_rate=0.,
                 output_norm=partial(nn.LayerNorm, eps=1e-6), 
                 head_fn=MlpHead,
                 head_dropout=0.0, 
                 **kwargs,
                 ):
        super().__init__()
        self.num_classes = num_classes

        if not isinstance(depths, (list, tuple)):
            depths = [depths] # it means the model has only one stage
        if not isinstance(dims, (list, tuple)):
            dims = [dims]

        num_stage = len(depths)
        self.num_stage = num_stage

        if not isinstance(downsample_layers, (list, tuple)):
            downsample_layers = [downsample_layers] * num_stage
        down_dims = [in_chans] + dims
        self.downsample_layers = nn.ModuleList(
            [downsample_layers[i](down_dims[i], down_dims[i+1]) for i in range(num_stage)]
        )

        dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]

        self.stages = nn.ModuleList()
        cur = 0
        for i in range(num_stage):
            stage = nn.Sequential(
                *[GatedCNNBlock(dim=dims[i],
                norm_layer=norm_layer,
                act_layer=act_layer,
                kernel_size=kernel_size,
                conv_ratio=conv_ratio,
                drop_path=dp_rates[cur + j],
                ) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = output_norm(dims[-1])

        if head_dropout > 0.0:
            self.head = head_fn(dims[-1], num_classes, head_dropout=head_dropout)
        else:
            self.head = head_fn(dims[-1], num_classes)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'norm'}

    def forward_features(self, x):
        for i in range(self.num_stage):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
        return self.norm(x.mean([1, 2])) # (B, H, W, C) -> (B, C)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x



###############################################################################
# a series of MambaOut models
@register_model
def mambaout_femto(pretrained=False, **kwargs):
    model = MambaOut(
        depths=[3, 3, 9, 3],
        dims=[48, 96, 192, 288],
        **kwargs)
    model.default_cfg = default_cfgs['mambaout_femto']
    if pretrained:
        state_dict = torch.hub.load_state_dict_from_url(
            url= model.default_cfg['url'], map_location="cpu", check_hash=True)
        model.load_state_dict(state_dict)
    return model


@register_model
def mambaout_tiny(pretrained=False, **kwargs):
    model = MambaOut(
        depths=[3, 3, 9, 3],
        dims=[96, 192, 384, 576],
        **kwargs)
    model.default_cfg = default_cfgs['mambaout_tiny']
    if pretrained:
        state_dict = torch.hub.load_state_dict_from_url(
            url= model.default_cfg['url'], map_location="cpu", check_hash=True)
        model.load_state_dict(state_dict)
    return model


@register_model
def mambaout_small(pretrained=False, **kwargs):
    model = MambaOut(
        depths=[3, 4, 27, 3],
        dims=[96, 192, 384, 576],
        **kwargs)
    model.default_cfg = default_cfgs['mambaout_small']
    if pretrained:
        state_dict = torch.hub.load_state_dict_from_url(
            url= model.default_cfg['url'], map_location="cpu", check_hash=True)
        model.load_state_dict(state_dict)
    return model


@register_model
def mambaout_base(pretrained=False, **kwargs):
    model = MambaOut(
        depths=[3, 4, 27, 3],
        dims=[128, 256, 512, 768],
        **kwargs)
    model.default_cfg = default_cfgs['mambaout_base']
    if pretrained:
        state_dict = torch.hub.load_state_dict_from_url(
            url= model.default_cfg['url'], map_location="cpu", check_hash=True)
        model.load_state_dict(state_dict)
    return model