File size: 11,390 Bytes
0816d86 68ae2ac 13ec6ce 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 5337d6c 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 d6f752e 0816d86 68ae2ac 0816d86 68ae2ac ecb69b6 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 1025bd3 0816d86 5d87500 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 799394d 68ae2ac 799394d 732e91d 799394d 732e91d 799394d 732e91d 799394d 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 68ae2ac 0816d86 13ec6ce 0816d86 c6e852b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# final one
import torch
import spaces
import gradio as gr
import os
import numpy as np
import trimesh
import mcubes
import imageio
from torchvision.utils import save_image
from PIL import Image
from transformers import AutoModel, AutoConfig
from rembg import remove, new_session
from functools import partial
from kiui.op import recenter
import kiui
from gradio_litmodel3d import LitModel3D
# we load the pre-trained model from HF
class LRMGeneratorWrapper:
def __init__(self):
self.config = AutoConfig.from_pretrained("facebook/vfusion3d", trust_remote_code=True)
self.model = AutoModel.from_pretrained("facebook/vfusion3d", trust_remote_code=True)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
self.model.eval()
def forward(self, image, camera):
return self.model(image, camera)
model_wrapper = LRMGeneratorWrapper()
# we preprocess the input image
def preprocess_image(image, source_size):
session = new_session("isnet-general-use")
rembg_remove = partial(remove, session=session)
image = np.array(image)
image = rembg_remove(image)
mask = rembg_remove(image, only_mask=True)
image = recenter(image, mask, border_ratio=0.20)
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
if image.shape[1] == 4:
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
image = torch.clamp(image, 0, 1)
return image
# Copied from https://github.com/facebookresearch/vfusion3d/blob/main/lrm/cam_utils.py and
# https://github.com/facebookresearch/vfusion3d/blob/main/lrm/inferrer.py
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
fx, fy = fx / width, fy / height
cx, cy = cx / width, cy / height
return fx, fy, cx, cy
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
return torch.cat([
RT.reshape(-1, 12),
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
], dim=-1)
def _default_intrinsics():
fx = fy = 384
cx = cy = 256
w = h = 512
intrinsics = torch.tensor([
[fx, fy],
[cx, cy],
[w, h],
], dtype=torch.float32)
return intrinsics
def _default_source_camera(batch_size: int = 1):
canonical_camera_extrinsics = torch.tensor([[
[0, 0, 1, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
]], dtype=torch.float32)
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
return source_camera.repeat(batch_size, 1)
def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
"""
camera_position: (M, 3)
look_at: (3)
up_world: (3)
return: (M, 3, 4)
"""
# by default, looking at the origin and world up is pos-z
if look_at is None:
look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
if up_world is None:
up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)
z_axis = camera_position - look_at
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
x_axis = torch.cross(up_world, z_axis)
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
y_axis = torch.cross(z_axis, x_axis)
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
return extrinsics
def compose_extrinsic_RT(RT: torch.Tensor):
"""
Compose the standard form extrinsic matrix from RT.
Batched I/O.
"""
return torch.cat([
RT,
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
], dim=1)
def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
"""
RT: (N, 3, 4)
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
"""
E = compose_extrinsic_RT(RT)
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
I = torch.stack([
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
], dim=1)
return torch.cat([
E.reshape(-1, 16),
I.reshape(-1, 9),
], dim=-1)
def _default_render_cameras(batch_size: int = 1):
M = 80
radius = 1.5
elevation = 0
camera_positions = []
rand_theta = np.random.uniform(0, np.pi/180)
elevation = np.radians(elevation)
for i in range(M):
theta = 2 * np.pi * i / M + rand_theta
x = radius * np.cos(theta) * np.cos(elevation)
y = radius * np.sin(theta) * np.cos(elevation)
z = radius * np.sin(elevation)
camera_positions.append([x, y, z])
camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
extrinsics = _center_looking_at_camera_pose(camera_positions)
render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=True, fps=30):
image = preprocess_image(image, source_size).to(model_wrapper.device)
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
with torch.no_grad():
planes = model_wrapper.forward(image, source_camera)
if export_mesh:
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
mesh_path = "awesome_mesh.obj"
mesh.export(mesh_path, 'obj')
return mesh_path, mesh_path
if export_video:
render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
frames = []
chunk_size = 1
for i in range(0, render_cameras.shape[1], chunk_size):
frame_chunk = model_wrapper.model.synthesizer(
planes,
render_cameras[:, i:i + chunk_size],
render_size,
render_size,
0,
0
)
frames.append(frame_chunk['images_rgb'])
frames = torch.cat(frames, dim=1)
frames = frames.squeeze(0)
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
video_path = "awesome_video.mp4"
imageio.mimwrite(video_path, frames, fps=fps)
return None, video_path
return None, None
def step_1_generate_obj(image):
mesh_path, _ = generate_mesh(image, export_mesh=True)
return mesh_path, mesh_path
def step_2_generate_video(image):
_, video_path = generate_mesh(image, export_video=True)
return video_path
def step_3_display_3d_model(mesh_file):
return mesh_file
# set up the example files from assets folder, we limit to 10
example_folder = "assets"
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg'))][:10]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("""
# Welcome to [VFusion3D](https://junlinhan.github.io/projects/vfusion3d.html) Demo
This demo allows you to upload an image and generate a 3D model or rendered videos from it.
## How to Use:
1. Click on "Click to Upload" to upload an image, or choose one example image.
2: Choose between "Generate and Download Mesh" or "Generate and Download Video", then click it.
3. Wait for the model to process; meshes should take approximately 10 seconds, and videos will take approximately 30 seconds.
4. Download the generated mesh or video.
This demo does not aim to provide optimal results but rather to provide a quick look. See our [GitHub](https://github.com/facebookresearch/vfusion3d) for more.
""")
img_input = gr.Image(type="pil", label="Input Image")
examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=3)
generate_mesh_button = gr.Button("Generate and Download Mesh")
generate_video_button = gr.Button("Generate and Download Video")
obj_file_output = gr.File(label="Download .obj File")
video_file_output = gr.File(label="Download Video")
with gr.Column():
model_output = LitModel3D(
clear_color=[0.1, 0.1, 0.1, 0], # can adjust background color for better contrast
label="3D Model Visualization",
scale=1.0,
tonemapping="aces", # can use aces tonemapping for more realistic lighting
exposure=1.0, # can adjust exposure to control brightness
contrast=1.1, # can slightly increase contrast for better depth
camera_position=(0, 0, 2), # will set initial camera position to center the model
zoom_speed=0.5, # will adjust zoom speed for better control
pan_speed=0.5, # will adjust pan speed for better control
interactive=True # this allow users to interact with the model
)
# clear outputs
def clear_model_viewer():
"""Reset the Model3D component before loading a new model."""
return gr.update(value=None)
def generate_and_visualize(image):
mesh_path = step_1_generate_obj(image)
return mesh_path, mesh_path
# first we clear the existing 3D model
img_input.change(clear_model_viewer, inputs=None, outputs=model_output)
# then, generate the mesh and video
@spaces.GPU
generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output)
demo.launch()
|