# final one import torch import spaces import gradio as gr import os import numpy as np import trimesh import mcubes import imageio from torchvision.utils import save_image from PIL import Image from transformers import AutoModel, AutoConfig from rembg import remove, new_session from functools import partial from kiui.op import recenter import kiui from gradio_litmodel3d import LitModel3D import shutil def find_cuda(): # Check if CUDA_HOME or CUDA_PATH environment variables are set cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home and os.path.exists(cuda_home): return cuda_home # Search for the nvcc executable in the system's PATH nvcc_path = shutil.which('nvcc') if nvcc_path: # Remove the 'bin/nvcc' part to get the CUDA installation path cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) return cuda_path return None cuda_path = find_cuda() if cuda_path: print(f"CUDA installation found at: {cuda_path}") else: print("CUDA installation not found") # we load the pre-trained model from HF class LRMGeneratorWrapper: def __init__(self): self.config = AutoConfig.from_pretrained("facebook/vfusion3d", trust_remote_code=True) self.model = AutoModel.from_pretrained("facebook/vfusion3d", trust_remote_code=True) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(self.device) self.model.eval() def forward(self, image, camera): return self.model(image, camera) model_wrapper = LRMGeneratorWrapper() # we preprocess the input image def preprocess_image(image, source_size): session = new_session("isnet-general-use") rembg_remove = partial(remove, session=session) image = np.array(image) image = rembg_remove(image) mask = rembg_remove(image, only_mask=True) image = recenter(image, mask, border_ratio=0.20) image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0 if image.shape[1] == 4: image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...]) image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True) image = torch.clamp(image, 0, 1) return image # Copied from https://github.com/facebookresearch/vfusion3d/blob/main/lrm/cam_utils.py and # https://github.com/facebookresearch/vfusion3d/blob/main/lrm/inferrer.py def get_normalized_camera_intrinsics(intrinsics: torch.Tensor): fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1] cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1] width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1] fx, fy = fx / width, fy / height cx, cy = cx / width, cy / height return fx, fy, cx, cy def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor): fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) return torch.cat([ RT.reshape(-1, 12), fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1), ], dim=-1) def _default_intrinsics(): fx = fy = 384 cx = cy = 256 w = h = 512 intrinsics = torch.tensor([ [fx, fy], [cx, cy], [w, h], ], dtype=torch.float32) return intrinsics def _default_source_camera(batch_size: int = 1): canonical_camera_extrinsics = torch.tensor([[ [0, 0, 1, 1], [1, 0, 0, 0], [0, 1, 0, 0], ]], dtype=torch.float32) canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0) source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics) return source_camera.repeat(batch_size, 1) def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None): """ camera_position: (M, 3) look_at: (3) up_world: (3) return: (M, 3, 4) """ # by default, looking at the origin and world up is pos-z if look_at is None: look_at = torch.tensor([0, 0, 0], dtype=torch.float32) if up_world is None: up_world = torch.tensor([0, 0, 1], dtype=torch.float32) look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1) up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1) z_axis = camera_position - look_at z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True) x_axis = torch.cross(up_world, z_axis) x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True) y_axis = torch.cross(z_axis, x_axis) y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True) extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1) return extrinsics def compose_extrinsic_RT(RT: torch.Tensor): """ Compose the standard form extrinsic matrix from RT. Batched I/O. """ return torch.cat([ RT, torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device) ], dim=1) def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor): """ RT: (N, 3, 4) intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] """ E = compose_extrinsic_RT(RT) fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) I = torch.stack([ torch.stack([fx, torch.zeros_like(fx), cx], dim=-1), torch.stack([torch.zeros_like(fy), fy, cy], dim=-1), torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1), ], dim=1) return torch.cat([ E.reshape(-1, 16), I.reshape(-1, 9), ], dim=-1) def _default_render_cameras(batch_size: int = 1): M = 80 radius = 1.5 elevation = 0 camera_positions = [] rand_theta = np.random.uniform(0, np.pi/180) elevation = np.radians(elevation) for i in range(M): theta = 2 * np.pi * i / M + rand_theta x = radius * np.cos(theta) * np.cos(elevation) y = radius * np.sin(theta) * np.cos(elevation) z = radius * np.sin(elevation) camera_positions.append([x, y, z]) camera_positions = torch.tensor(camera_positions, dtype=torch.float32) extrinsics = _center_looking_at_camera_pose(camera_positions) render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1) render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics) return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1) @spaces.GPU def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=True, fps=30): image = preprocess_image(image, source_size).to(model_wrapper.device) source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device) with torch.no_grad(): planes = model_wrapper.forward(image, source_camera) if export_mesh: grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size) vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0) vtx = vtx / (mesh_size - 1) * 2 - 1 vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0) vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() vtx_colors = (vtx_colors * 255).astype(np.uint8) mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) mesh_path = "awesome_mesh.obj" mesh.export(mesh_path, 'obj') return mesh_path, mesh_path if export_video: render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device) frames = [] chunk_size = 1 for i in range(0, render_cameras.shape[1], chunk_size): frame_chunk = model_wrapper.model.synthesizer( planes, render_cameras[:, i:i + chunk_size], render_size, render_size, 0, 0 ) frames.append(frame_chunk['images_rgb']) frames = torch.cat(frames, dim=1) frames = frames.squeeze(0) frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8) video_path = "awesome_video.mp4" imageio.mimwrite(video_path, frames, fps=fps) return None, video_path return None, None def step_1_generate_obj(image): mesh_path, _ = generate_mesh(image, export_mesh=True) return mesh_path, mesh_path def step_2_generate_video(image): _, video_path = generate_mesh(image, export_video=True) return video_path def step_3_display_3d_model(mesh_file): return mesh_file # set up the example files from assets folder, we limit to 10 example_folder = "assets" examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg'))][:10] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Markdown(""" # Welcome to [tooth3d](https://junlinhan.github.io/projects/vfusion3d.html) Demo This demo allows you to upload an image and generate a 3D model or rendered videos from it. ## How to Use: 1. Click on "Click to Upload" to upload an image, or choose one example image. 2: Choose between "Generate and Download Mesh" or "Generate and Download Video", then click it. 3. Wait for the model to process; meshes should take approximately 10 seconds, and videos will take approximately 30 seconds. 4. Download the generated mesh or video. This demo does not aim to provide optimal results but rather to provide a quick look. See our [GitHub](https://github.com/facebookresearch/vfusion3d) for more. """) img_input = gr.Image(type="pil", label="Input Image") examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=3) generate_mesh_button = gr.Button("Generate and Download Mesh") generate_video_button = gr.Button("Generate and Download Video") obj_file_output = gr.File(label="Download .obj File") video_file_output = gr.File(label="Download Video") with gr.Column(): model_output = LitModel3D( clear_color=[0.1, 0.1, 0.1, 0], # can adjust background color for better contrast label="3D Model Visualization", scale=1.0, tonemapping="aces", # can use aces tonemapping for more realistic lighting exposure=1.0, # can adjust exposure to control brightness contrast=1.1, # can slightly increase contrast for better depth camera_position=(0, 0, 2), # will set initial camera position to center the model zoom_speed=0.5, # will adjust zoom speed for better control pan_speed=0.5, # will adjust pan speed for better control interactive=True # this allow users to interact with the model ) # clear outputs def clear_model_viewer(): """Reset the Model3D component before loading a new model.""" return gr.update(value=None) def generate_and_visualize(image): mesh_path = step_1_generate_obj(image) return mesh_path, mesh_path # first we clear the existing 3D model img_input.change(clear_model_viewer, inputs=None, outputs=model_output) # then, generate the mesh and video generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output]) generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output) demo.launch()