Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,12 +8,10 @@ import spaces
|
|
8 |
device = 0 if torch.cuda.is_available() else -1
|
9 |
|
10 |
def load_model():
|
11 |
-
# Load the base model and tokenizer
|
12 |
base_model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
14 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
15 |
|
16 |
-
# Load the PEFT adapter
|
17 |
peft_model = PeftModel.from_pretrained(
|
18 |
base_model,
|
19 |
"ombhojane/smile-small",
|
@@ -29,14 +27,22 @@ def load_model():
|
|
29 |
pipe = load_model()
|
30 |
|
31 |
@spaces.GPU
|
32 |
-
def generate_response(message):
|
|
|
|
|
|
|
33 |
messages = [
|
34 |
{"role": "user", "content": message}
|
35 |
]
|
36 |
-
# Generate longer output text
|
37 |
-
generated_text = pipe(messages, max_new_tokens=200, num_return_sequences=1)
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
response = generated_text[0]['generated_text']
|
41 |
if isinstance(response, list):
|
42 |
for msg in response:
|
@@ -44,15 +50,92 @@ def generate_response(message):
|
|
44 |
return msg.get('content', '')
|
45 |
return response
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
# Launch the app
|
57 |
if __name__ == "__main__":
|
58 |
demo.launch()
|
|
|
8 |
device = 0 if torch.cuda.is_available() else -1
|
9 |
|
10 |
def load_model():
|
|
|
11 |
base_model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
13 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
14 |
|
|
|
15 |
peft_model = PeftModel.from_pretrained(
|
16 |
base_model,
|
17 |
"ombhojane/smile-small",
|
|
|
27 |
pipe = load_model()
|
28 |
|
29 |
@spaces.GPU
|
30 |
+
def generate_response(message, max_length, temperature):
|
31 |
+
if not message:
|
32 |
+
return "Please enter a message to generate a response."
|
33 |
+
|
34 |
messages = [
|
35 |
{"role": "user", "content": message}
|
36 |
]
|
|
|
|
|
37 |
|
38 |
+
generated_text = pipe(
|
39 |
+
messages,
|
40 |
+
max_new_tokens=max_length,
|
41 |
+
num_return_sequences=1,
|
42 |
+
temperature=temperature,
|
43 |
+
do_sample=True
|
44 |
+
)
|
45 |
+
|
46 |
response = generated_text[0]['generated_text']
|
47 |
if isinstance(response, list):
|
48 |
for msg in response:
|
|
|
50 |
return msg.get('content', '')
|
51 |
return response
|
52 |
|
53 |
+
# Custom CSS for better styling
|
54 |
+
custom_css = """
|
55 |
+
.gradio-container {
|
56 |
+
font-family: 'Arial', sans-serif;
|
57 |
+
}
|
58 |
+
.main-title {
|
59 |
+
text-align: center;
|
60 |
+
color: #2C3E50;
|
61 |
+
margin-bottom: 1em;
|
62 |
+
}
|
63 |
+
.description {
|
64 |
+
text-align: justify;
|
65 |
+
margin-bottom: 2em;
|
66 |
+
color: #34495E;
|
67 |
+
}
|
68 |
+
"""
|
69 |
+
|
70 |
+
with gr.Blocks(css=custom_css) as demo:
|
71 |
+
gr.Markdown(
|
72 |
+
"""
|
73 |
+
# 🌟 S.M.I.L.E for India
|
74 |
+
### Smart Marketing Intelligence & Local Engagement
|
75 |
+
"""
|
76 |
+
)
|
77 |
+
|
78 |
+
with gr.Row():
|
79 |
+
with gr.Column(scale=2):
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
### About
|
83 |
+
S.M.I.L.E is an AI assistant trained to handle Indian customer queries with cultural context awareness,
|
84 |
+
beneficial for Indian CRMs. It understands local nuances, cultural preferences, and consumer behaviors
|
85 |
+
specific to the Indian market.
|
86 |
+
"""
|
87 |
+
)
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column(scale=2):
|
91 |
+
input_text = gr.Textbox(
|
92 |
+
lines=4,
|
93 |
+
placeholder="Enter your query about Indian consumer behavior, cultural aspects, or market trends...",
|
94 |
+
label="Your Query"
|
95 |
+
)
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
max_length = gr.Slider(
|
99 |
+
minimum=50,
|
100 |
+
maximum=500,
|
101 |
+
value=200,
|
102 |
+
step=10,
|
103 |
+
label="Maximum Response Length",
|
104 |
+
info="Adjust the length of the generated response"
|
105 |
+
)
|
106 |
+
temperature = gr.Slider(
|
107 |
+
minimum=0.1,
|
108 |
+
maximum=1.0,
|
109 |
+
value=0.7,
|
110 |
+
step=0.1,
|
111 |
+
label="Temperature",
|
112 |
+
info="Higher values make the output more creative, lower values make it more focused"
|
113 |
+
)
|
114 |
+
|
115 |
+
submit_btn = gr.Button("Generate Response", variant="primary")
|
116 |
+
|
117 |
+
with gr.Column(scale=2):
|
118 |
+
output_text = gr.Textbox(
|
119 |
+
lines=12,
|
120 |
+
label="AI Response",
|
121 |
+
show_copy_button=True
|
122 |
+
)
|
123 |
+
|
124 |
+
with gr.Accordion("Sample Queries", open=False):
|
125 |
+
gr.Markdown(
|
126 |
+
"""
|
127 |
+
- What are the key factors influencing Indian consumer buying behavior?
|
128 |
+
- How do cultural values affect marketing strategies in India?
|
129 |
+
- What are the popular festival shopping trends in India?
|
130 |
+
- Explain the role of family decision-making in Indian purchases
|
131 |
+
"""
|
132 |
+
)
|
133 |
+
|
134 |
+
submit_btn.click(
|
135 |
+
generate_response,
|
136 |
+
inputs=[input_text, max_length, temperature],
|
137 |
+
outputs=output_text
|
138 |
+
)
|
139 |
|
|
|
140 |
if __name__ == "__main__":
|
141 |
demo.launch()
|