Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,32 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import torch
|
3 |
import gradio as gr
|
|
|
4 |
import spaces
|
5 |
|
6 |
-
|
7 |
# Use the GPU if available
|
8 |
device = 0 if torch.cuda.is_available() else -1
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
@spaces.GPU
|
12 |
def generate_response(message):
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
import spaces
|
6 |
|
|
|
7 |
# Use the GPU if available
|
8 |
device = 0 if torch.cuda.is_available() else -1
|
9 |
+
|
10 |
+
def load_model():
|
11 |
+
# Load the base model and tokenizer
|
12 |
+
base_model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
14 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
15 |
+
|
16 |
+
# Load the PEFT adapter
|
17 |
+
peft_model = PeftModel.from_pretrained(
|
18 |
+
base_model,
|
19 |
+
"ombhojane/smile-small",
|
20 |
+
)
|
21 |
+
|
22 |
+
return pipeline(
|
23 |
+
"text-generation",
|
24 |
+
model=peft_model,
|
25 |
+
tokenizer=tokenizer,
|
26 |
+
device=device
|
27 |
+
)
|
28 |
+
|
29 |
+
pipe = load_model()
|
30 |
|
31 |
@spaces.GPU
|
32 |
def generate_response(message):
|