Spaces:
Runtime error
Runtime error
File size: 9,562 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Overview\n",
"\n",
"This notebook can be used with both a single or multi- speaker corpus and allows the interactive plotting of speaker embeddings linked to underlying audio (see instructions in the repo's speaker_embedding directory)\n",
"\n",
"Depending on the directory structure used for your corpus, you may need to adjust handling of **speaker_to_utter** and **locations**."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import glob\n",
"import numpy as np\n",
"import umap\n",
"\n",
"from TTS.utils.audio import AudioProcessor\n",
"from TTS.config import load_config\n",
"\n",
"from bokeh.io import output_notebook, show\n",
"from bokeh.plotting import figure\n",
"from bokeh.models import HoverTool, ColumnDataSource, BoxZoomTool, ResetTool, OpenURL, TapTool\n",
"from bokeh.transform import factor_cmap\n",
"from bokeh.palettes import Category10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For larger sets of speakers, you can use **Category20**, but you need to change it in the **pal** variable too\n",
"\n",
"List of Bokeh palettes here: http://docs.bokeh.org/en/1.4.0/docs/reference/palettes.html\n",
"\n",
"**NB:** if you have problems with other palettes, first see https://stackoverflow.com/questions/48333820/why-do-some-bokeh-palettes-raise-a-valueerror-when-used-in-factor-cmap"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You should also adjust all the path constants to point at the relevant locations for you locally"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL_RUN_PATH = \"/media/erogol/data_ssd/Models/libri_tts/speaker_encoder/libritts_360-half-October-31-2019_04+54PM-19d2f5f/\"\n",
"MODEL_PATH = MODEL_RUN_PATH + \"best_model.pth\"\n",
"CONFIG_PATH = MODEL_RUN_PATH + \"config.json\"\n",
"\n",
"# My single speaker locations\n",
"#EMBED_PATH = \"/home/neil/main/Projects/TTS3/embeddings/neil14/\"\n",
"#AUDIO_PATH = \"/home/neil/data/Projects/NeilTTS/neil14/wavs/\"\n",
"\n",
"# My multi speaker locations\n",
"EMBED_PATH = \"/home/erogol/Data/Libri-TTS/train-clean-360-embed_128/\"\n",
"AUDIO_PATH = \"/home/erogol/Data/Libri-TTS/train-clean-360/\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!ls -1 $MODEL_RUN_PATH"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"CONFIG = load_config(CONFIG_PATH)\n",
"ap = AudioProcessor(**CONFIG['audio'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Bring in the embeddings created by **compute_embeddings.py**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embed_files = glob.glob(EMBED_PATH+\"/**/*.npy\", recursive=True)\n",
"print(f'Embeddings found: {len(embed_files)}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check that we did indeed find an embedding"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embed_files[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Process the speakers\n",
"\n",
"Assumes count of **speaker_paths** corresponds to number of speakers (so a corpus in just one directory would be treated like a single speaker and the multiple directories of LibriTTS are treated as distinct speakers)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"speaker_paths = list(set([os.path.dirname(os.path.dirname(embed_file)) for embed_file in embed_files]))\n",
"speaker_to_utter = {}\n",
"for embed_file in embed_files:\n",
" speaker_path = os.path.dirname(os.path.dirname(embed_file))\n",
" try:\n",
" speaker_to_utter[speaker_path].append(embed_file)\n",
" except:\n",
" speaker_to_utter[speaker_path]=[embed_file]\n",
"print(f'Speaker count: {len(speaker_paths)}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set up the embeddings\n",
"\n",
"Adjust the number of speakers to select and the number of utterances from each speaker and they will be randomly sampled from the corpus"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeds = []\n",
"labels = []\n",
"locations = []\n",
"\n",
"# single speaker \n",
"#num_speakers = 1\n",
"#num_utters = 1000\n",
"\n",
"# multi speaker\n",
"num_speakers = 10\n",
"num_utters = 20\n",
"\n",
"\n",
"speaker_idxs = np.random.choice(range(len(speaker_paths)), num_speakers, replace=False )\n",
"\n",
"for speaker_num, speaker_idx in enumerate(speaker_idxs):\n",
" speaker_path = speaker_paths[speaker_idx]\n",
" speakers_utter = speaker_to_utter[speaker_path]\n",
" utter_idxs = np.random.randint(0, len(speakers_utter) , num_utters)\n",
" for utter_idx in utter_idxs:\n",
" embed_path = speaker_to_utter[speaker_path][utter_idx]\n",
" embed = np.load(embed_path)\n",
" embeds.append(embed)\n",
" labels.append(str(speaker_num))\n",
" locations.append(embed_path.replace(EMBED_PATH, '').replace('.npy','.wav'))\n",
"embeds = np.concatenate(embeds)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load embeddings with UMAP"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = umap.UMAP()\n",
"projection = model.fit_transform(embeds)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interactively charting the data in Bokeh\n",
"\n",
"Set up various details for Bokeh to plot the data\n",
"\n",
"You can use the regular Bokeh [tools](http://docs.bokeh.org/en/1.4.0/docs/user_guide/tools.html?highlight=tools) to explore the data, with reset setting it back to normal\n",
"\n",
"Once you have started the local server (see cell below) you can then click on plotted points which will open a tab to play the audio for that point, enabling easy exploration of your corpus\n",
"\n",
"File location in the tooltip is given relative to **AUDIO_PATH**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"source_wav_stems = ColumnDataSource(\n",
" data=dict(\n",
" x = projection.T[0].tolist(),\n",
" y = projection.T[1].tolist(),\n",
" desc=locations,\n",
" label=labels\n",
" )\n",
" )\n",
"\n",
"hover = HoverTool(\n",
" tooltips=[\n",
" (\"file\", \"@desc\"),\n",
" (\"speaker\", \"@label\"),\n",
" ]\n",
" )\n",
"\n",
"# optionally consider adding these to the tooltips if you want additional detail\n",
"# for the coordinates: (\"(x,y)\", \"($x, $y)\"),\n",
"# for the index of the embedding / wav file: (\"index\", \"$index\"),\n",
"\n",
"factors = list(set(labels))\n",
"pal_size = max(len(factors), 3)\n",
"pal = Category10[pal_size]\n",
"\n",
"p = figure(plot_width=600, plot_height=400, tools=[hover,BoxZoomTool(), ResetTool(), TapTool()])\n",
"\n",
"\n",
"p.circle('x', 'y', source=source_wav_stems, color=factor_cmap('label', palette=pal, factors=factors),)\n",
"\n",
"url = \"http://localhost:8000/@desc\"\n",
"taptool = p.select(type=TapTool)\n",
"taptool.callback = OpenURL(url=url)\n",
"\n",
"show(p)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Local server to serve wav files from corpus\n",
"\n",
"This is required so that when you click on a data point the hyperlink associated with it will be served the file locally.\n",
"\n",
"There are other ways to serve this if you prefer and you can also run the commands manually on the command line\n",
"\n",
"The server will continue to run until stopped. To stop it simply interupt the kernel (ie square button or under Kernel menu)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%cd $AUDIO_PATH\n",
"%pwd\n",
"!python -m http.server"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|