File size: 9,811 Bytes
45ee559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os

import torch
from trainer import Trainer, TrainerArgs

from TTS.bin.compute_embeddings import compute_embeddings
from TTS.bin.resample import resample_files
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig
from TTS.utils.downloaders import download_vctk

torch.set_num_threads(24)

# pylint: disable=W0105
"""
    This recipe replicates the first experiment proposed in the YourTTS paper (https://arxiv.org/abs/2112.02418).
    YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes.
    In addition, YourTTS can be trained in multilingual data, however, this recipe replicates the single language training using the VCTK dataset.
    If you are interested in multilingual training, we have commented on parameters on the VitsArgs class instance that should be enabled for multilingual training.
    In addition, you will need to add the extra datasets following the VCTK as an example.
"""
CURRENT_PATH = os.path.dirname(os.path.abspath(__file__))

# Name of the run for the Trainer
RUN_NAME = "YourTTS-EN-VCTK"

# Path where you want to save the models outputs (configs, checkpoints and tensorboard logs)
OUT_PATH = os.path.dirname(os.path.abspath(__file__))  # "/raid/coqui/Checkpoints/original-YourTTS/"

# If you want to do transfer learning and speedup your training you can set here the path to the original YourTTS model
RESTORE_PATH = None  # "/root/.local/share/tts/tts_models--multilingual--multi-dataset--your_tts/model_file.pth"

# This paramter is useful to debug, it skips the training epochs and just do the evaluation  and produce the test sentences
SKIP_TRAIN_EPOCH = False

# Set here the batch size to be used in training and evaluation
BATCH_SIZE = 32

# Training Sampling rate and the target sampling rate for resampling the downloaded dataset (Note: If you change this you might need to redownload the dataset !!)
# Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios
SAMPLE_RATE = 16000

# Max audio length in seconds to be used in training (every audio bigger than it will be ignored)
MAX_AUDIO_LEN_IN_SECONDS = 10

### Download VCTK dataset
VCTK_DOWNLOAD_PATH = os.path.join(CURRENT_PATH, "VCTK")
# Define the number of threads used during the audio resampling
NUM_RESAMPLE_THREADS = 10
# Check if VCTK dataset is not already downloaded, if not download it
if not os.path.exists(VCTK_DOWNLOAD_PATH):
    print(">>> Downloading VCTK dataset:")
    download_vctk(VCTK_DOWNLOAD_PATH)
    resample_files(VCTK_DOWNLOAD_PATH, SAMPLE_RATE, file_ext="flac", n_jobs=NUM_RESAMPLE_THREADS)

# init configs
vctk_config = BaseDatasetConfig(
    formatter="vctk",
    dataset_name="vctk",
    meta_file_train="",
    meta_file_val="",
    path=VCTK_DOWNLOAD_PATH,
    language="en",
    ignored_speakers=[
        "p261",
        "p225",
        "p294",
        "p347",
        "p238",
        "p234",
        "p248",
        "p335",
        "p245",
        "p326",
        "p302",
    ],  # Ignore the test speakers to full replicate the paper experiment
)

# Add here all datasets configs, in our case we just want to train with the VCTK dataset then we need to add just VCTK. Note: If you want to add new datasets, just add them here and it will automatically compute the speaker embeddings (d-vectors) for this new dataset :)
DATASETS_CONFIG_LIST = [vctk_config]

### Extract speaker embeddings
SPEAKER_ENCODER_CHECKPOINT_PATH = (
    "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar"
)
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json"

D_VECTOR_FILES = []  # List of speaker embeddings/d-vectors to be used during the training

# Iterates all the dataset configs checking if the speakers embeddings are already computated, if not compute it
for dataset_conf in DATASETS_CONFIG_LIST:
    # Check if the embeddings weren't already computed, if not compute it
    embeddings_file = os.path.join(dataset_conf.path, "speakers.pth")
    if not os.path.isfile(embeddings_file):
        print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset")
        compute_embeddings(
            SPEAKER_ENCODER_CHECKPOINT_PATH,
            SPEAKER_ENCODER_CONFIG_PATH,
            embeddings_file,
            old_speakers_file=None,
            config_dataset_path=None,
            formatter_name=dataset_conf.formatter,
            dataset_name=dataset_conf.dataset_name,
            dataset_path=dataset_conf.path,
            meta_file_train=dataset_conf.meta_file_train,
            meta_file_val=dataset_conf.meta_file_val,
            disable_cuda=False,
            no_eval=False,
        )
    D_VECTOR_FILES.append(embeddings_file)


# Audio config used in training.
audio_config = VitsAudioConfig(
    sample_rate=SAMPLE_RATE,
    hop_length=256,
    win_length=1024,
    fft_size=1024,
    mel_fmin=0.0,
    mel_fmax=None,
    num_mels=80,
)

# Init VITSArgs setting the arguments that are needed for the YourTTS model
model_args = VitsArgs(
    d_vector_file=D_VECTOR_FILES,
    use_d_vector_file=True,
    d_vector_dim=512,
    num_layers_text_encoder=10,
    speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH,
    speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH,
    resblock_type_decoder="2",  # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model
    # Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper
    # use_speaker_encoder_as_loss=True,
    # Useful parameters to enable multilingual training
    # use_language_embedding=True,
    # embedded_language_dim=4,
)

# General training config, here you can change the batch size and others useful parameters
config = VitsConfig(
    output_path=OUT_PATH,
    model_args=model_args,
    run_name=RUN_NAME,
    project_name="YourTTS",
    run_description="""
            - Original YourTTS trained using VCTK dataset
        """,
    dashboard_logger="tensorboard",
    logger_uri=None,
    audio=audio_config,
    batch_size=BATCH_SIZE,
    batch_group_size=48,
    eval_batch_size=BATCH_SIZE,
    num_loader_workers=8,
    eval_split_max_size=256,
    print_step=50,
    plot_step=100,
    log_model_step=1000,
    save_step=5000,
    save_n_checkpoints=2,
    save_checkpoints=True,
    target_loss="loss_1",
    print_eval=False,
    use_phonemes=False,
    phonemizer="espeak",
    phoneme_language="en",
    compute_input_seq_cache=True,
    add_blank=True,
    text_cleaner="multilingual_cleaners",
    characters=CharactersConfig(
        characters_class="TTS.tts.models.vits.VitsCharacters",
        pad="_",
        eos="&",
        bos="*",
        blank=None,
        characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00af\u00b7\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e6\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u00ff\u0101\u0105\u0107\u0113\u0119\u011b\u012b\u0131\u0142\u0144\u014d\u0151\u0153\u015b\u016b\u0171\u017a\u017c\u01ce\u01d0\u01d2\u01d4\u0430\u0431\u0432\u0433\u0434\u0435\u0436\u0437\u0438\u0439\u043a\u043b\u043c\u043d\u043e\u043f\u0440\u0441\u0442\u0443\u0444\u0445\u0446\u0447\u0448\u0449\u044a\u044b\u044c\u044d\u044e\u044f\u0451\u0454\u0456\u0457\u0491\u2013!'(),-.:;? ",
        punctuations="!'(),-.:;? ",
        phonemes="",
        is_unique=True,
        is_sorted=True,
    ),
    phoneme_cache_path=None,
    precompute_num_workers=12,
    start_by_longest=True,
    datasets=DATASETS_CONFIG_LIST,
    cudnn_benchmark=False,
    max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS,
    mixed_precision=False,
    test_sentences=[
        [
            "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
            "VCTK_p277",
            None,
            "en",
        ],
        [
            "Be a voice, not an echo.",
            "VCTK_p239",
            None,
            "en",
        ],
        [
            "I'm sorry Dave. I'm afraid I can't do that.",
            "VCTK_p258",
            None,
            "en",
        ],
        [
            "This cake is great. It's so delicious and moist.",
            "VCTK_p244",
            None,
            "en",
        ],
        [
            "Prior to November 22, 1963.",
            "VCTK_p305",
            None,
            "en",
        ],
    ],
    # Enable the weighted sampler
    use_weighted_sampler=True,
    # Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has
    weighted_sampler_attrs={"speaker_name": 1.0},
    weighted_sampler_multipliers={},
    # It defines the Speaker Consistency Loss (SCL) Ξ± to 9 like the paper
    speaker_encoder_loss_alpha=9.0,
)

# Load all the datasets samples and split traning and evaluation sets
train_samples, eval_samples = load_tts_samples(
    config.datasets,
    eval_split=True,
    eval_split_max_size=config.eval_split_max_size,
    eval_split_size=config.eval_split_size,
)

# Init the model
model = Vits.init_from_config(config)

# Init the trainer and πŸš€
trainer = Trainer(
    TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH),
    config,
    output_path=OUT_PATH,
    model=model,
    train_samples=train_samples,
    eval_samples=eval_samples,
)
trainer.fit()