File size: 5,995 Bytes
45ee559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import unittest

import torch as T

from tests import get_tests_input_path
from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
from TTS.encoder.models.lstm import LSTMSpeakerEncoder
from TTS.encoder.models.resnet import ResNetSpeakerEncoder

file_path = get_tests_input_path()


class LSTMSpeakerEncoderTests(unittest.TestCase):
    # pylint: disable=R0201
    def test_in_out(self):
        dummy_input = T.rand(4, 80, 20)  # B x D x T
        dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)]
        model = LSTMSpeakerEncoder(input_dim=80, proj_dim=256, lstm_dim=768, num_lstm_layers=3)
        # computing d vectors
        output = model.forward(dummy_input)
        assert output.shape[0] == 4
        assert output.shape[1] == 256
        output = model.inference(dummy_input)
        assert output.shape[0] == 4
        assert output.shape[1] == 256
        # compute d vectors by passing LSTM hidden
        # output = model.forward(dummy_input, dummy_hidden)
        # assert output.shape[0] == 4
        # assert output.shape[1] == 20
        # assert output.shape[2] == 256
        # check normalization
        output_norm = T.nn.functional.normalize(output, dim=1, p=2)
        assert_diff = (output_norm - output).sum().item()
        assert output.type() == "torch.FloatTensor"
        assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}"
        # compute d for a given batch
        dummy_input = T.rand(1, 80, 240)  # B x T x D
        output = model.compute_embedding(dummy_input, num_frames=160, num_eval=5)
        assert output.shape[0] == 1
        assert output.shape[1] == 256
        assert len(output.shape) == 2


class ResNetSpeakerEncoderTests(unittest.TestCase):
    # pylint: disable=R0201
    def test_in_out(self):
        dummy_input = T.rand(4, 80, 20)  # B x D x T
        dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)]
        model = ResNetSpeakerEncoder(input_dim=80, proj_dim=256)
        # computing d vectors
        output = model.forward(dummy_input)
        assert output.shape[0] == 4
        assert output.shape[1] == 256
        output = model.forward(dummy_input, l2_norm=True)
        assert output.shape[0] == 4
        assert output.shape[1] == 256

        # check normalization
        output_norm = T.nn.functional.normalize(output, dim=1, p=2)
        assert_diff = (output_norm - output).sum().item()
        assert output.type() == "torch.FloatTensor"
        assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}"
        # compute d for a given batch
        dummy_input = T.rand(1, 80, 240)  # B x D x T
        output = model.compute_embedding(dummy_input, num_frames=160, num_eval=10)
        assert output.shape[0] == 1
        assert output.shape[1] == 256
        assert len(output.shape) == 2


class GE2ELossTests(unittest.TestCase):
    # pylint: disable=R0201
    def test_in_out(self):
        # check random input
        dummy_input = T.rand(4, 5, 64)  # num_speaker x num_utterance x dim
        loss = GE2ELoss(loss_method="softmax")
        output = loss.forward(dummy_input)
        assert output.item() >= 0.0
        # check all zeros
        dummy_input = T.ones(4, 5, 64)  # num_speaker x num_utterance x dim
        loss = GE2ELoss(loss_method="softmax")
        output = loss.forward(dummy_input)
        assert output.item() >= 0.0
        # check speaker loss with orthogonal d-vectors
        dummy_input = T.empty(3, 64)
        dummy_input = T.nn.init.orthogonal_(dummy_input)
        dummy_input = T.cat(
            [
                dummy_input[0].repeat(5, 1, 1).transpose(0, 1),
                dummy_input[1].repeat(5, 1, 1).transpose(0, 1),
                dummy_input[2].repeat(5, 1, 1).transpose(0, 1),
            ]
        )  # num_speaker x num_utterance x dim
        loss = GE2ELoss(loss_method="softmax")
        output = loss.forward(dummy_input)
        assert output.item() < 0.005


class AngleProtoLossTests(unittest.TestCase):
    # pylint: disable=R0201
    def test_in_out(self):
        # check random input
        dummy_input = T.rand(4, 5, 64)  # num_speaker x num_utterance x dim
        loss = AngleProtoLoss()
        output = loss.forward(dummy_input)
        assert output.item() >= 0.0

        # check all zeros
        dummy_input = T.ones(4, 5, 64)  # num_speaker x num_utterance x dim
        loss = AngleProtoLoss()
        output = loss.forward(dummy_input)
        assert output.item() >= 0.0

        # check speaker loss with orthogonal d-vectors
        dummy_input = T.empty(3, 64)
        dummy_input = T.nn.init.orthogonal_(dummy_input)
        dummy_input = T.cat(
            [
                dummy_input[0].repeat(5, 1, 1).transpose(0, 1),
                dummy_input[1].repeat(5, 1, 1).transpose(0, 1),
                dummy_input[2].repeat(5, 1, 1).transpose(0, 1),
            ]
        )  # num_speaker x num_utterance x dim
        loss = AngleProtoLoss()
        output = loss.forward(dummy_input)
        assert output.item() < 0.005


class SoftmaxAngleProtoLossTests(unittest.TestCase):
    # pylint: disable=R0201
    def test_in_out(self):
        embedding_dim = 64
        num_speakers = 5
        batch_size = 4

        dummy_label = T.randint(low=0, high=num_speakers, size=(batch_size, num_speakers))
        # check random input
        dummy_input = T.rand(batch_size, num_speakers, embedding_dim)  # num_speaker x num_utterance x dim
        loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers)
        output = loss.forward(dummy_input, dummy_label)
        assert output.item() >= 0.0

        # check all zeros
        dummy_input = T.ones(batch_size, num_speakers, embedding_dim)  # num_speaker x num_utterance x dim
        loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers)
        output = loss.forward(dummy_input, dummy_label)
        assert output.item() >= 0.0