Spaces:
Runtime error
Runtime error
File size: 9,840 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This file was created by jhlfrfufyfn for choose speaker from the Belarusian Mozilla Voice corpus\n",
"#\n",
"#\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import os\n",
"import librosa"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# unpackage tar gz file cv-corpus-12.0-2022-12-07-be.tar.gz\n",
"# import tarfile\n",
"# tar = tarfile.open(\"cv-corpus-12.0-2022-12-07-be.tar.gz\", \"r:gz\")\n",
"# tar.extractall()\n",
"# tar.close()\n",
"\n",
"corpuspath = '/a/cv-corpus'\n",
"outputpath = '/storage/filtered_dataset'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# open validated.tsv\n",
"df = pd.read_csv(corpuspath+'/be/validated.tsv', sep='\\t' ,low_memory=False)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# drop from df columns age, accents\n",
"df = df.drop(['age', 'accents', 'gender', 'variant', 'locale', 'segment'], axis=1)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# count number of recordes with down_votes > 0\n",
"df[df['down_votes'] > 0].count()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# count number of recordes with up_votes == 0\n",
"df[df['up_votes'] == 0].count()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# drop all rows with down_votes > 0 and up_votes == 0\n",
"df = df[df['down_votes'] == 0]\n",
"df = df[df['up_votes'] > 0]\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# drop column down_votes and up_votes\n",
"df = df.drop(['down_votes', 'up_votes'], axis=1)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sort by count\n",
"df_sorted = df.groupby('client_id').count().sort_values(by='path', ascending=False)\n",
"df_sorted"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get top 10 speakers\n",
"top_10_speakers = df_sorted.head(10)\n",
"top_10_speakers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get for the first speaker ten random paths to audio files\n",
"def get_speaker_audio_list(speaker_id, n=10):\n",
" return df[df['client_id'] == speaker_id].sample(n)['path'].values.tolist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# CHOOSE : which speaker will we use\n",
"speaker_index = 0\n",
"speaker_audio_list = get_speaker_audio_list(top_10_speakers.index[speaker_index])\n",
"print(speaker_audio_list)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# open audio files from speaker_audio_list and play them\n",
"# audio files lie in cv-corpus-12.0-2022-12-07/be/clips\n",
"import IPython.display as ipd\n",
"for audio in speaker_audio_list:\n",
" audio = corpuspath+'/be/clips/' + audio\n",
" audio_data = ipd.Audio(audio)\n",
" display(audio_data)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 0 is pretty good\n",
"# 1 is bad\n",
"# 2 is partly 0, other are different\n",
"# 3 is bad\n",
"# 4 is pretty fast and clear, but not good\n",
"# 5 is echoing, sometimes mic cracks\n",
"# 6 is really slow and clear, but accent?\n",
"# 7 has a lot of intonation, but is pretty clear\n",
"# 8 is clear and slow, sometimes little mic crack\n",
"# 9 has background noise, whispering\n",
"\n",
"# options: 0, 6, 8"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# calculate speech rate in words per minute for each speaker\n",
"def get_speech_rate(speaker_id):\n",
" df_speaker = df[df['client_id'] == speaker_id]\n",
" # get 1000 random samples to calculate speech rate\n",
" df_speaker = df_speaker.sample(1000)\n",
" # get duration of each audio file\n",
" df_speaker['duration'] = df_speaker['path'].apply(lambda x: librosa.get_duration(path=corpuspath+'/be/clips/' + x))\n",
" # get number of words in each audio file\n",
" df_speaker['words'] = df_speaker['sentence'].apply(lambda x: len(x.split()))\n",
" # calculate speech rate\n",
" df_speaker['speech_rate'] = df_speaker['words'] / df_speaker['duration'] * 60\n",
" # return mean speech rate\n",
" return df_speaker['speech_rate'].mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# calculate speech rate for each speaker\n",
"print(f'Speech rate for speaker {speaker_index}: ', get_speech_rate(top_10_speakers.index[speaker_index]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_average_duration(df_speaker):\n",
" # get 1000 random samples to calculate speech rate\n",
" df_speaker = df_speaker.sample(1000)\n",
" # get duration of each audio file\n",
" df_speaker['duration'] = df_speaker['path'].apply(lambda x: librosa.get_duration(path=corpuspath+'/be/clips/' + x))\n",
" return df_speaker['duration'].mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_speaker = df[df['client_id'] == top_10_speakers.index[speaker_index]]\n",
"\n",
"avg_duration = get_average_duration(df_speaker)\n",
"avg_total_duration = avg_duration * len(df_speaker.index)\n",
"print(f'Average duration for speaker {speaker_index}: ', avg_duration, \", average total duration(hours): \",(avg_total_duration/60.0/60.0))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get df with speaker_index speaker \n",
"df_speaker = df[df['client_id'] == top_10_speakers.index[speaker_index]]\n",
"df_speaker = df_speaker.drop(['client_id'], axis=1)\n",
"\n",
"# get only x latest hours\n",
"limit_hours = 30\n",
"limit_files = round(limit_hours*60*60 / avg_duration)\n",
"df_speaker = df_speaker.tail(limit_files)\n",
"\n",
"df_speaker"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# # move all files of that speaker to another folder\n",
"# # use multiprocessing to speed up\n",
"# # add progress bar\n",
"# from tqdm import tqdm\n",
"# import multiprocessing\n",
"# from multiprocessing import Pool\n",
"# import shutil\n",
"\n",
"# def move_file(file):\n",
"# shutil.move(corpuspath+'/be/clips/' + file, corpuspath+'/be/speaker_0/' + file)\n",
"\n",
"# # get list of files to move\n",
"# files = df_speaker['path'].values.tolist()\n",
"\n",
"# # move files\n",
"# with Pool(multiprocessing.cpu_count()) as p:\n",
"# r = list(tqdm(p.imap(move_file, files), total=len(files)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# cleanup output and save text lines to csv\n",
"if os.path.isdir(outputpath):\n",
" for file in os.scandir(outputpath):\n",
" os.remove(file.path)\n",
"else:\n",
" os.mkdir(outputpath)\n",
"\n",
"df_speaker['path2'] = df_speaker['path'].str.replace('\\.mp3$','.wav', regex=True)\n",
"df_speaker[['path2','sentence']].to_csv(outputpath+'/df_speaker.csv', sep='|', header=False, index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# make rate=22050 of all mp3 files in speaker_0 folder with multiprocessing and tqdm\n",
"import multiprocessing\n",
"from multiprocessing import Pool\n",
"from tqdm import tqdm\n",
"from pydub import AudioSegment\n",
"\n",
"def convert_mp3_to_wav(file):\n",
" sound = AudioSegment.from_mp3(corpuspath+'/be/clips/' + file)\n",
" sound = sound.set_frame_rate(22050)\n",
" sound.export(outputpath+'/' + file[:-4] + '.wav', format='wav')\n",
"\n",
"# get list of files to convert\n",
"files = df_speaker['path'].values.tolist()\n",
"\n",
"# convert files\n",
"with Pool(multiprocessing.cpu_count()) as p:\n",
" r = list(tqdm(p.imap(convert_mp3_to_wav, files), total=len(files)))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|