Spaces:
Runtime error
Runtime error
File size: 4,787 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
from TTS.encoder.configs.speaker_encoder_config import SpeakerEncoderConfig
# from TTS.encoder.configs.emotion_encoder_config import EmotionEncoderConfig
from TTS.tts.configs.shared_configs import BaseDatasetConfig
CURRENT_PATH = os.getcwd()
# change the root path to the TTS root path
os.chdir("../../../")
### Definitions ###
# dataset
VCTK_PATH = "/raid/datasets/VCTK_NEW_16khz_removed_silence_silero_vad/" # download: https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zipdddddddddd
RIR_SIMULATED_PATH = "/raid/datasets/DA/RIRS_NOISES/simulated_rirs/" # download: https://www.openslr.org/17/
MUSAN_PATH = "/raid/datasets/DA/musan/" # download: https://www.openslr.org/17/
# training
OUTPUT_PATH = os.path.join(
CURRENT_PATH, "resnet_speaker_encoder_training_output/"
) # path to save the train logs and checkpoint
CONFIG_OUT_PATH = os.path.join(OUTPUT_PATH, "config_se.json")
RESTORE_PATH = None # Checkpoint to use for transfer learning if None ignore
# instance the config
# to speaker encoder
config = SpeakerEncoderConfig()
# to emotion encoder
# config = EmotionEncoderConfig()
#### DATASET CONFIG ####
# The formatter need to return the key "speaker_name" for the speaker encoder and the "emotion_name" for the emotion encoder
dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", language="en-us", path=VCTK_PATH)
# add the dataset to the config
config.datasets = [dataset_config]
#### TRAINING CONFIG ####
# The encoder data loader balancer the dataset item equally to guarantee better training and to attend the losses requirements
# It have two parameters to control the final batch size the number total of speaker used in each batch and the number of samples for each speaker
# number total of speaker in batch in training
config.num_classes_in_batch = 100
# number of utterance per class/speaker in the batch in training
config.num_utter_per_class = 4
# final batch size = config.num_classes_in_batch * config.num_utter_per_class
# number total of speaker in batch in evaluation
config.eval_num_classes_in_batch = 100
# number of utterance per class/speaker in the batch in evaluation
config.eval_num_utter_per_class = 4
# number of data loader workers
config.num_loader_workers = 8
config.num_val_loader_workers = 8
# number of epochs
config.epochs = 10000
# loss to be used in training
config.loss = "softmaxproto"
# run eval
config.run_eval = False
# output path for the checkpoints
config.output_path = OUTPUT_PATH
# Save local checkpoint every save_step steps
config.save_step = 2000
### Model Config ###
config.model_params = {
"model_name": "resnet", # supported "lstm" and "resnet"
"input_dim": 64,
"use_torch_spec": True,
"log_input": True,
"proj_dim": 512, # embedding dim
}
### Audio Config ###
# To fast train the model divides the audio in small parts. it parameter defines the length in seconds of these "parts"
config.voice_len = 2.0
# all others configs
config.audio = {
"fft_size": 512,
"win_length": 400,
"hop_length": 160,
"frame_shift_ms": None,
"frame_length_ms": None,
"stft_pad_mode": "reflect",
"sample_rate": 16000,
"resample": False,
"preemphasis": 0.97,
"ref_level_db": 20,
"do_sound_norm": False,
"do_trim_silence": False,
"trim_db": 60,
"power": 1.5,
"griffin_lim_iters": 60,
"num_mels": 64,
"mel_fmin": 0.0,
"mel_fmax": 8000.0,
"spec_gain": 20,
"signal_norm": False,
"min_level_db": -100,
"symmetric_norm": False,
"max_norm": 4.0,
"clip_norm": False,
"stats_path": None,
"do_rms_norm": True,
"db_level": -27.0,
}
### Augmentation Config ###
config.audio_augmentation = {
# additive noise and room impulse response (RIR) simulation similar to: https://arxiv.org/pdf/2009.14153.pdf
"p": 0.5, # probability to the use of one of the augmentation - 0 means disabled
"rir": {"rir_path": RIR_SIMULATED_PATH, "conv_mode": "full"}, # download: https://www.openslr.org/17/
"additive": {
"sounds_path": MUSAN_PATH,
"speech": {"min_snr_in_db": 13, "max_snr_in_db": 20, "min_num_noises": 1, "max_num_noises": 1},
"noise": {"min_snr_in_db": 0, "max_snr_in_db": 15, "min_num_noises": 1, "max_num_noises": 1},
"music": {"min_snr_in_db": 5, "max_snr_in_db": 15, "min_num_noises": 1, "max_num_noises": 1},
},
"gaussian": {"p": 0.7, "min_amplitude": 0.0, "max_amplitude": 1e-05},
}
config.save_json(CONFIG_OUT_PATH)
print(CONFIG_OUT_PATH)
if RESTORE_PATH is not None:
command = f"python TTS/bin/train_encoder.py --config_path {CONFIG_OUT_PATH} --restore_path {RESTORE_PATH}"
else:
command = f"python TTS/bin/train_encoder.py --config_path {CONFIG_OUT_PATH}"
os.system(command)
|