File size: 6,203 Bytes
45ee559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# visualisation tools for mimic2
import argparse
import csv
import os
import random
from statistics import StatisticsError, mean, median, mode, stdev

import matplotlib.pyplot as plt
import seaborn as sns
from text.cmudict import CMUDict


def get_audio_seconds(frames):
    return (frames * 12.5) / 1000


def append_data_statistics(meta_data):
    # get data statistics
    for char_cnt in meta_data:
        data = meta_data[char_cnt]["data"]
        audio_len_list = [d["audio_len"] for d in data]
        mean_audio_len = mean(audio_len_list)
        try:
            mode_audio_list = [round(d["audio_len"], 2) for d in data]
            mode_audio_len = mode(mode_audio_list)
        except StatisticsError:
            mode_audio_len = audio_len_list[0]
        median_audio_len = median(audio_len_list)

        try:
            std = stdev(d["audio_len"] for d in data)
        except StatisticsError:
            std = 0

        meta_data[char_cnt]["mean"] = mean_audio_len
        meta_data[char_cnt]["median"] = median_audio_len
        meta_data[char_cnt]["mode"] = mode_audio_len
        meta_data[char_cnt]["std"] = std
    return meta_data


def process_meta_data(path):
    meta_data = {}

    # load meta data
    with open(path, "r", encoding="utf-8") as f:
        data = csv.reader(f, delimiter="|")
        for row in data:
            frames = int(row[2])
            utt = row[3]
            audio_len = get_audio_seconds(frames)
            char_count = len(utt)
            if not meta_data.get(char_count):
                meta_data[char_count] = {"data": []}

            meta_data[char_count]["data"].append(
                {
                    "utt": utt,
                    "frames": frames,
                    "audio_len": audio_len,
                    "row": "{}|{}|{}|{}".format(row[0], row[1], row[2], row[3]),
                }
            )

    meta_data = append_data_statistics(meta_data)

    return meta_data


def get_data_points(meta_data):
    x = meta_data
    y_avg = [meta_data[d]["mean"] for d in meta_data]
    y_mode = [meta_data[d]["mode"] for d in meta_data]
    y_median = [meta_data[d]["median"] for d in meta_data]
    y_std = [meta_data[d]["std"] for d in meta_data]
    y_num_samples = [len(meta_data[d]["data"]) for d in meta_data]
    return {
        "x": x,
        "y_avg": y_avg,
        "y_mode": y_mode,
        "y_median": y_median,
        "y_std": y_std,
        "y_num_samples": y_num_samples,
    }


def save_training(file_path, meta_data):
    rows = []
    for char_cnt in meta_data:
        data = meta_data[char_cnt]["data"]
        for d in data:
            rows.append(d["row"] + "\n")

    random.shuffle(rows)
    with open(file_path, "w+", encoding="utf-8") as f:
        for row in rows:
            f.write(row)


def plot(meta_data, save_path=None):
    save = False
    if save_path:
        save = True

    graph_data = get_data_points(meta_data)
    x = graph_data["x"]
    y_avg = graph_data["y_avg"]
    y_std = graph_data["y_std"]
    y_mode = graph_data["y_mode"]
    y_median = graph_data["y_median"]
    y_num_samples = graph_data["y_num_samples"]

    plt.figure()
    plt.plot(x, y_avg, "ro")
    plt.xlabel("character lengths", fontsize=30)
    plt.ylabel("avg seconds", fontsize=30)
    if save:
        name = "char_len_vs_avg_secs"
        plt.savefig(os.path.join(save_path, name))

    plt.figure()
    plt.plot(x, y_mode, "ro")
    plt.xlabel("character lengths", fontsize=30)
    plt.ylabel("mode seconds", fontsize=30)
    if save:
        name = "char_len_vs_mode_secs"
        plt.savefig(os.path.join(save_path, name))

    plt.figure()
    plt.plot(x, y_median, "ro")
    plt.xlabel("character lengths", fontsize=30)
    plt.ylabel("median seconds", fontsize=30)
    if save:
        name = "char_len_vs_med_secs"
        plt.savefig(os.path.join(save_path, name))

    plt.figure()
    plt.plot(x, y_std, "ro")
    plt.xlabel("character lengths", fontsize=30)
    plt.ylabel("standard deviation", fontsize=30)
    if save:
        name = "char_len_vs_std"
        plt.savefig(os.path.join(save_path, name))

    plt.figure()
    plt.plot(x, y_num_samples, "ro")
    plt.xlabel("character lengths", fontsize=30)
    plt.ylabel("number of samples", fontsize=30)
    if save:
        name = "char_len_vs_num_samples"
        plt.savefig(os.path.join(save_path, name))


def plot_phonemes(train_path, cmu_dict_path, save_path):
    cmudict = CMUDict(cmu_dict_path)

    phonemes = {}

    with open(train_path, "r", encoding="utf-8") as f:
        data = csv.reader(f, delimiter="|")
        phonemes["None"] = 0
        for row in data:
            words = row[3].split()
            for word in words:
                pho = cmudict.lookup(word)
                if pho:
                    indie = pho[0].split()
                    for nemes in indie:
                        if phonemes.get(nemes):
                            phonemes[nemes] += 1
                        else:
                            phonemes[nemes] = 1
                else:
                    phonemes["None"] += 1

    x, y = [], []
    for k, v in phonemes.items():
        x.append(k)
        y.append(v)

    plt.figure()
    plt.rcParams["figure.figsize"] = (50, 20)
    barplot = sns.barplot(x=x, y=y)
    if save_path:
        fig = barplot.get_figure()
        fig.savefig(os.path.join(save_path, "phoneme_dist"))


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--train_file_path",
        required=True,
        help="this is the path to the train.txt file that the preprocess.py script creates",
    )
    parser.add_argument("--save_to", help="path to save charts of data to")
    parser.add_argument("--cmu_dict_path", help="give cmudict-0.7b to see phoneme distribution")
    args = parser.parse_args()
    meta_data = process_meta_data(args.train_file_path)
    plt.rcParams["figure.figsize"] = (10, 5)
    plot(meta_data, save_path=args.save_to)
    if args.cmu_dict_path:
        plt.rcParams["figure.figsize"] = (30, 10)
        plot_phonemes(args.train_file_path, args.cmu_dict_path, args.save_to)

    plt.show()


if __name__ == "__main__":
    main()