File size: 4,013 Bytes
45ee559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

{
    "model": "speaker_encoder",
    "run_name": "test_speaker_encoder",
    "run_description": "test speaker encoder.",
    "audio":{
        // Audio processing parameters
        "num_mels": 40,         // size of the mel spec frame.
        "fft_size": 400,       // number of stft frequency levels. Size of the linear spectogram frame.
        "sample_rate": 16000,   // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
        "win_length": 400,     // stft window length in ms.
        "hop_length": 160,      // stft window hop-lengh in ms.
        "frame_length_ms": null,  // stft window length in ms.If null, 'win_length' is used.
        "frame_shift_ms": null,   // stft window hop-lengh in ms. If null, 'hop_length' is used.
        "preemphasis": 0.98,    // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
        "min_level_db": -100,   // normalization range
        "ref_level_db": 20,     // reference level db, theoretically 20db is the sound of air.
        "power": 1.5,           // value to sharpen wav signals after GL algorithm.
        "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
        // Normalization parameters
        "signal_norm": true,    // normalize the spec values in range [0, 1]
        "symmetric_norm": true, // move normalization to range [-1, 1]
        "max_norm": 4.0,          // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
        "clip_norm": true,      // clip normalized values into the range.
        "mel_fmin": 0.0,         // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
        "mel_fmax": 8000.0,        // maximum freq level for mel-spec. Tune for dataset!!
        "do_trim_silence": true,  // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
        "trim_db": 60          // threshold for timming silence. Set this according to your dataset.
    },
    "reinit_layers": [],
    "loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
    "grad_clip": 3.0, // upper limit for gradients for clipping.
    "epochs": 1000, // total number of epochs to train.
    "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
    "lr_decay": false, // if true, Noam learning rate decaying is applied through training.
    "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
    "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
    "steps_plot_stats": 10, // number of steps to plot embeddings.
    "num_classes_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
    "num_utter_per_class": 10,  //
    "num_loader_workers": 8,        // number of training data loader processes. Don't set it too big. 4-8 are good values.
    "wd": 0.000001, // Weight decay weight.
    "checkpoint": true, // If true, it saves checkpoints per "save_step"
    "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
    "print_step": 20, // Number of steps to log traning on console.
    "batch_size": 32,
    "output_path": "", // DATASET-RELATED: output path for all training outputs.
    "model_params": {
        "model_name": "lstm",
        "input_dim": 40,
        "proj_dim": 256,
        "lstm_dim": 768,
        "num_lstm_layers": 3,
        "use_lstm_with_projection": true
    },
    "storage": {
        "sample_from_storage_p": 0.66,  // the probability with which we'll sample from the DataSet in-memory storage
        "storage_size": 15  // the size of the in-memory storage with respect to a single batch
    },
    "datasets":null
}