File size: 17,419 Bytes
45ee559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import random
import unittest
from copy import deepcopy

import torch

from tests import get_tests_output_path
from TTS.tts.configs.overflow_config import OverflowConfig
from TTS.tts.layers.overflow.common_layers import Encoder, Outputnet, OverflowUtils
from TTS.tts.layers.overflow.decoder import Decoder
from TTS.tts.layers.overflow.neural_hmm import EmissionModel, NeuralHMM, TransitionModel
from TTS.tts.models.overflow import Overflow
from TTS.tts.utils.helpers import sequence_mask
from TTS.utils.audio import AudioProcessor

# pylint: disable=unused-variable

torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

config_global = OverflowConfig(num_chars=24)
ap = AudioProcessor.init_from_config(config_global)

config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
parameter_path = os.path.join(get_tests_output_path(), "lj_parameters.pt")

torch.save({"mean": -5.5138, "std": 2.0636, "init_transition_prob": 0.3212}, parameter_path)


def _create_inputs(batch_size=8):
    max_len_t, max_len_m = random.randint(25, 50), random.randint(50, 80)
    input_dummy = torch.randint(0, 24, (batch_size, max_len_t)).long().to(device)
    input_lengths = torch.randint(20, max_len_t, (batch_size,)).long().to(device).sort(descending=True)[0]
    input_lengths[0] = max_len_t
    input_dummy = input_dummy * sequence_mask(input_lengths)
    mel_spec = torch.randn(batch_size, max_len_m, config_global.audio["num_mels"]).to(device)
    mel_lengths = torch.randint(40, max_len_m, (batch_size,)).long().to(device).sort(descending=True)[0]
    mel_lengths[0] = max_len_m
    mel_spec = mel_spec * sequence_mask(mel_lengths).unsqueeze(2)
    return input_dummy, input_lengths, mel_spec, mel_lengths


def get_model(config=None):
    if config is None:
        config = config_global
    config.mel_statistics_parameter_path = parameter_path
    model = Overflow(config)
    model = model.to(device)
    return model


def reset_all_weights(model):
    """
    refs:
        - https://discuss.pytorch.org/t/how-to-re-set-alll-parameters-in-a-network/20819/6
        - https://stackoverflow.com/questions/63627997/reset-parameters-of-a-neural-network-in-pytorch
        - https://pytorch.org/docs/stable/generated/torch.nn.Module.html
    """

    @torch.no_grad()
    def weight_reset(m):
        # - check if the current module has reset_parameters & if it's callabed called it on m
        reset_parameters = getattr(m, "reset_parameters", None)
        if callable(reset_parameters):
            m.reset_parameters()

    # Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html
    model.apply(fn=weight_reset)


class TestOverflow(unittest.TestCase):
    def test_forward(self):
        model = get_model()
        input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs()
        outputs = model(input_dummy, input_lengths, mel_spec, mel_lengths)
        self.assertEqual(outputs["log_probs"].shape, (input_dummy.shape[0],))
        self.assertEqual(model.state_per_phone * max(input_lengths), outputs["alignments"].shape[2])

    def test_inference(self):
        model = get_model()
        input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs()
        output_dict = model.inference(input_dummy)
        self.assertEqual(output_dict["model_outputs"].shape[2], config_global.out_channels)

    def test_init_from_config(self):
        config = deepcopy(config_global)
        config.mel_statistics_parameter_path = parameter_path
        config.prenet_dim = 256
        model = Overflow.init_from_config(config_global)
        self.assertEqual(model.prenet_dim, config.prenet_dim)


class TestOverflowEncoder(unittest.TestCase):
    @staticmethod
    def get_encoder(state_per_phone):
        config = deepcopy(config_global)
        config.state_per_phone = state_per_phone
        config.num_chars = 24
        return Encoder(config.num_chars, config.state_per_phone, config.prenet_dim, config.encoder_n_convolutions).to(
            device
        )

    def test_forward_with_state_per_phone_multiplication(self):
        for s_p_p in [1, 2, 3]:
            input_dummy, input_lengths, _, _ = _create_inputs()
            model = self.get_encoder(s_p_p)
            x, x_len = model(input_dummy, input_lengths)
            self.assertEqual(x.shape[1], input_dummy.shape[1] * s_p_p)

    def test_inference_with_state_per_phone_multiplication(self):
        for s_p_p in [1, 2, 3]:
            input_dummy, input_lengths, _, _ = _create_inputs()
            model = self.get_encoder(s_p_p)
            x, x_len = model.inference(input_dummy, input_lengths)
            self.assertEqual(x.shape[1], input_dummy.shape[1] * s_p_p)


class TestOverflowUtils(unittest.TestCase):
    def test_logsumexp(self):
        a = torch.randn(10)  # random numbers
        self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all())

        a = torch.zeros(10)  # all zeros
        self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all())

        a = torch.ones(10)  # all ones
        self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all())


class TestOverflowDecoder(unittest.TestCase):
    @staticmethod
    def _get_decoder(num_flow_blocks_dec=None, hidden_channels_dec=None, reset_weights=True):
        config = deepcopy(config_global)
        config.num_flow_blocks_dec = (
            num_flow_blocks_dec if num_flow_blocks_dec is not None else config.num_flow_blocks_dec
        )
        config.hidden_channels_dec = (
            hidden_channels_dec if hidden_channels_dec is not None else config.hidden_channels_dec
        )
        config.dropout_p_dec = 0.0  # turn off dropout to check invertibility
        decoder = Decoder(
            config.out_channels,
            config.hidden_channels_dec,
            config.kernel_size_dec,
            config.dilation_rate,
            config.num_flow_blocks_dec,
            config.num_block_layers,
            config.dropout_p_dec,
            config.num_splits,
            config.num_squeeze,
            config.sigmoid_scale,
            config.c_in_channels,
        ).to(device)
        if reset_weights:
            reset_all_weights(decoder)
        return decoder

    def test_decoder_forward_backward(self):
        for num_flow_blocks_dec in [8, None]:
            for hidden_channels_dec in [100, None]:
                decoder = self._get_decoder(num_flow_blocks_dec, hidden_channels_dec)
                _, _, mel_spec, mel_lengths = _create_inputs()
                z, z_len, _ = decoder(mel_spec.transpose(1, 2), mel_lengths)
                mel_spec_, mel_lengths_, _ = decoder(z, z_len, reverse=True)
                mask = sequence_mask(z_len).unsqueeze(1)
                mel_spec = mel_spec[:, : z.shape[2], :].transpose(1, 2) * mask
                z = z * mask
                self.assertTrue(
                    torch.isclose(mel_spec, mel_spec_, atol=1e-2).all(),
                    f"num_flow_blocks_dec={num_flow_blocks_dec}, hidden_channels_dec={hidden_channels_dec}",
                )


class TestNeuralHMM(unittest.TestCase):
    @staticmethod
    def _get_neural_hmm(deterministic_transition=None):
        config = deepcopy(config_global)
        neural_hmm = NeuralHMM(
            config.out_channels,
            config.ar_order,
            config.deterministic_transition if deterministic_transition is None else deterministic_transition,
            config.encoder_in_out_features,
            config.prenet_type,
            config.prenet_dim,
            config.prenet_n_layers,
            config.prenet_dropout,
            config.prenet_dropout_at_inference,
            config.memory_rnn_dim,
            config.outputnet_size,
            config.flat_start_params,
            config.std_floor,
        ).to(device)
        return neural_hmm

    @staticmethod
    def _get_emission_model():
        return EmissionModel().to(device)

    @staticmethod
    def _get_transition_model():
        return TransitionModel().to(device)

    @staticmethod
    def _get_embedded_input():
        input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs()
        input_dummy = torch.nn.Embedding(config_global.num_chars, config_global.encoder_in_out_features).to(device)(
            input_dummy
        )
        return input_dummy, input_lengths, mel_spec, mel_lengths

    def test_neural_hmm_forward(self):
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
        neural_hmm = self._get_neural_hmm()
        log_prob, log_alpha_scaled, transition_matrix, means = neural_hmm(
            input_dummy, input_lengths, mel_spec.transpose(1, 2), mel_lengths
        )
        self.assertEqual(log_prob.shape, (input_dummy.shape[0],))
        self.assertEqual(log_alpha_scaled.shape, transition_matrix.shape)

    def test_mask_lengths(self):
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
        neural_hmm = self._get_neural_hmm()
        log_prob, log_alpha_scaled, transition_matrix, means = neural_hmm(
            input_dummy, input_lengths, mel_spec.transpose(1, 2), mel_lengths
        )
        log_c = torch.randn(mel_spec.shape[0], mel_spec.shape[1], device=device)
        log_c, log_alpha_scaled = neural_hmm._mask_lengths(  # pylint: disable=protected-access
            mel_lengths, log_c, log_alpha_scaled
        )
        assertions = []
        for i in range(mel_spec.shape[0]):
            assertions.append(log_c[i, mel_lengths[i] :].sum() == 0.0)
        self.assertTrue(all(assertions), "Incorrect masking")
        assertions = []
        for i in range(mel_spec.shape[0]):
            assertions.append(log_alpha_scaled[i, mel_lengths[i] :, : input_lengths[i]].sum() == 0.0)
        self.assertTrue(all(assertions), "Incorrect masking")

    def test_process_ar_timestep(self):
        model = self._get_neural_hmm()
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()

        h_post_prenet, c_post_prenet = model._init_lstm_states(  # pylint: disable=protected-access
            input_dummy.shape[0], config_global.memory_rnn_dim, mel_spec
        )
        h_post_prenet, c_post_prenet = model._process_ar_timestep(  # pylint: disable=protected-access
            1,
            mel_spec,
            h_post_prenet,
            c_post_prenet,
        )

        self.assertEqual(h_post_prenet.shape, (input_dummy.shape[0], config_global.memory_rnn_dim))
        self.assertEqual(c_post_prenet.shape, (input_dummy.shape[0], config_global.memory_rnn_dim))

    def test_add_go_token(self):
        model = self._get_neural_hmm()
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()

        out = model._add_go_token(mel_spec)  # pylint: disable=protected-access
        self.assertEqual(out.shape, mel_spec.shape)
        self.assertTrue((out[:, 1:] == mel_spec[:, :-1]).all(), "Go token not appended properly")

    def test_forward_algorithm_variables(self):
        model = self._get_neural_hmm()
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()

        (
            log_c,
            log_alpha_scaled,
            transition_matrix,
            _,
        ) = model._initialize_forward_algorithm_variables(  # pylint: disable=protected-access
            mel_spec, input_dummy.shape[1] * config_global.state_per_phone
        )

        self.assertEqual(log_c.shape, (mel_spec.shape[0], mel_spec.shape[1]))
        self.assertEqual(
            log_alpha_scaled.shape,
            (
                mel_spec.shape[0],
                mel_spec.shape[1],
                input_dummy.shape[1] * config_global.state_per_phone,
            ),
        )
        self.assertEqual(
            transition_matrix.shape,
            (mel_spec.shape[0], mel_spec.shape[1], input_dummy.shape[1] * config_global.state_per_phone),
        )

    def test_get_absorption_state_scaling_factor(self):
        model = self._get_neural_hmm()
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
        input_lengths = input_lengths * config_global.state_per_phone
        (
            log_c,
            log_alpha_scaled,
            transition_matrix,
            _,
        ) = model._initialize_forward_algorithm_variables(  # pylint: disable=protected-access
            mel_spec, input_dummy.shape[1] * config_global.state_per_phone
        )
        log_alpha_scaled = torch.rand_like(log_alpha_scaled).clamp(1e-3)
        transition_matrix = torch.randn_like(transition_matrix).sigmoid().log()
        sum_final_log_c = model.get_absorption_state_scaling_factor(
            mel_lengths, log_alpha_scaled, input_lengths, transition_matrix
        )

        text_mask = ~sequence_mask(input_lengths)
        transition_prob_mask = ~model.get_mask_for_last_item(input_lengths, device=input_lengths.device)

        outputs = []

        for i in range(input_dummy.shape[0]):
            last_log_alpha_scaled = log_alpha_scaled[i, mel_lengths[i] - 1].masked_fill(text_mask[i], -float("inf"))
            log_last_transition_probability = OverflowUtils.log_clamped(
                torch.sigmoid(transition_matrix[i, mel_lengths[i] - 1])
            ).masked_fill(transition_prob_mask[i], -float("inf"))
            outputs.append(last_log_alpha_scaled + log_last_transition_probability)

        sum_final_log_c_computed = torch.logsumexp(torch.stack(outputs), dim=1)

        self.assertTrue(torch.isclose(sum_final_log_c_computed, sum_final_log_c).all())

    def test_inference(self):
        model = self._get_neural_hmm()
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
        for temp in [0.334, 0.667, 1.0]:
            outputs = model.inference(
                input_dummy, input_lengths, temp, config_global.max_sampling_time, config_global.duration_threshold
            )
            self.assertEqual(outputs["hmm_outputs"].shape[-1], outputs["input_parameters"][0][0][0].shape[-1])
            self.assertEqual(
                outputs["output_parameters"][0][0][0].shape[-1], outputs["input_parameters"][0][0][0].shape[-1]
            )
            self.assertEqual(len(outputs["alignments"]), input_dummy.shape[0])

    def test_emission_model(self):
        model = self._get_emission_model()
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
        x_t = torch.randn(input_dummy.shape[0], config_global.out_channels).to(device)
        means = torch.randn(input_dummy.shape[0], input_dummy.shape[1], config_global.out_channels).to(device)
        std = torch.rand_like(means).to(device).clamp_(1e-3)  # std should be positive
        out = model(x_t, means, std, input_lengths)
        self.assertEqual(out.shape, (input_dummy.shape[0], input_dummy.shape[1]))

        # testing sampling
        for temp in [0, 0.334, 0.667]:
            out = model.sample(means, std, 0)
            self.assertEqual(out.shape, means.shape)
            if temp == 0:
                self.assertTrue(torch.isclose(out, means).all())

    def test_transition_model(self):
        model = self._get_transition_model()
        input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
        prev_t_log_scaled_alph = torch.randn(input_dummy.shape[0], input_lengths.max()).to(device)
        transition_vector = torch.randn(input_lengths.max()).to(device)
        out = model(prev_t_log_scaled_alph, transition_vector, input_lengths)
        self.assertEqual(out.shape, (input_dummy.shape[0], input_lengths.max()))


class TestOverflowOutputNet(unittest.TestCase):
    @staticmethod
    def _get_outputnet():
        config = deepcopy(config_global)
        outputnet = Outputnet(
            config.encoder_in_out_features,
            config.memory_rnn_dim,
            config.out_channels,
            config.outputnet_size,
            config.flat_start_params,
            config.std_floor,
        ).to(device)
        return outputnet

    @staticmethod
    def _get_embedded_input():
        input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs()
        input_dummy = torch.nn.Embedding(config_global.num_chars, config_global.encoder_in_out_features).to(device)(
            input_dummy
        )
        one_timestep_frame = torch.randn(input_dummy.shape[0], config_global.memory_rnn_dim).to(device)
        return input_dummy, one_timestep_frame

    def test_outputnet_forward_with_flat_start(self):
        model = self._get_outputnet()
        input_dummy, one_timestep_frame = self._get_embedded_input()
        mean, std, transition_vector = model(one_timestep_frame, input_dummy)
        self.assertTrue(torch.isclose(mean, torch.tensor(model.flat_start_params["mean"] * 1.0)).all())
        self.assertTrue(torch.isclose(std, torch.tensor(model.flat_start_params["std"] * 1.0)).all())
        self.assertTrue(
            torch.isclose(
                transition_vector.sigmoid(), torch.tensor(model.flat_start_params["transition_p"] * 1.0)
            ).all()
        )