Spaces:
Runtime error
Runtime error
File size: 17,240 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import copy
import os
import unittest
import torch
from torch import optim
from trainer.logging.tensorboard_logger import TensorboardLogger
from tests import get_tests_data_path, get_tests_input_path, get_tests_output_path
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.tts.layers.losses import GlowTTSLoss
from TTS.tts.models.glow_tts import GlowTTS
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
# pylint: disable=unused-variable
torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
c = GlowTTSConfig()
ap = AudioProcessor(**c.audio)
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
BATCH_SIZE = 3
def count_parameters(model):
r"""Count number of trainable parameters in a network"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class TestGlowTTS(unittest.TestCase):
@staticmethod
def _create_inputs(batch_size=8):
input_dummy = torch.randint(0, 24, (batch_size, 128)).long().to(device)
input_lengths = torch.randint(100, 129, (batch_size,)).long().to(device)
input_lengths[-1] = 128
mel_spec = torch.rand(batch_size, 30, c.audio["num_mels"]).to(device)
mel_lengths = torch.randint(20, 30, (batch_size,)).long().to(device)
speaker_ids = torch.randint(0, 5, (batch_size,)).long().to(device)
return input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids
@staticmethod
def _check_parameter_changes(model, model_ref):
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref
)
count += 1
def test_init_multispeaker(self):
config = GlowTTSConfig(num_chars=32)
model = GlowTTS(config)
# speaker embedding with default speaker_embedding_dim
config.use_speaker_embedding = True
config.num_speakers = 5
config.d_vector_dim = None
model.init_multispeaker(config)
self.assertEqual(model.c_in_channels, model.hidden_channels_enc)
# use external speaker embeddings with speaker_embedding_dim = 301
config = GlowTTSConfig(num_chars=32)
config.use_d_vector_file = True
config.d_vector_dim = 301
model = GlowTTS(config)
model.init_multispeaker(config)
self.assertEqual(model.c_in_channels, 301)
# use speaker embedddings by the provided speaker_manager
config = GlowTTSConfig(num_chars=32)
config.use_speaker_embedding = True
config.speakers_file = os.path.join(get_tests_data_path(), "ljspeech", "speakers.json")
speaker_manager = SpeakerManager.init_from_config(config)
model = GlowTTS(config)
model.speaker_manager = speaker_manager
model.init_multispeaker(config)
self.assertEqual(model.c_in_channels, model.hidden_channels_enc)
self.assertEqual(model.num_speakers, speaker_manager.num_speakers)
# use external speaker embeddings by the provided speaker_manager
config = GlowTTSConfig(num_chars=32)
config.use_d_vector_file = True
config.d_vector_dim = 256
config.d_vector_file = os.path.join(get_tests_data_path(), "dummy_speakers.json")
speaker_manager = SpeakerManager.init_from_config(config)
model = GlowTTS(config)
model.speaker_manager = speaker_manager
model.init_multispeaker(config)
self.assertEqual(model.c_in_channels, speaker_manager.embedding_dim)
self.assertEqual(model.num_speakers, speaker_manager.num_speakers)
def test_unlock_act_norm_layers(self):
config = GlowTTSConfig(num_chars=32)
model = GlowTTS(config).to(device)
model.unlock_act_norm_layers()
for f in model.decoder.flows:
if getattr(f, "set_ddi", False):
self.assertFalse(f.initialized)
def test_lock_act_norm_layers(self):
config = GlowTTSConfig(num_chars=32)
model = GlowTTS(config).to(device)
model.lock_act_norm_layers()
for f in model.decoder.flows:
if getattr(f, "set_ddi", False):
self.assertTrue(f.initialized)
def _test_forward(self, batch_size):
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
# create model
config = GlowTTSConfig(num_chars=32)
model = GlowTTS(config).to(device)
model.train()
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model)))
# inference encoder and decoder with MAS
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths)
self.assertEqual(y["z"].shape, mel_spec.shape)
self.assertEqual(y["logdet"].shape, torch.Size([batch_size]))
self.assertEqual(y["y_mean"].shape, mel_spec.shape)
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape)
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],))
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,))
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,))
def test_forward(self):
self._test_forward(1)
self._test_forward(3)
def _test_forward_with_d_vector(self, batch_size):
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
d_vector = torch.rand(batch_size, 256).to(device)
# create model
config = GlowTTSConfig(
num_chars=32,
use_d_vector_file=True,
d_vector_dim=256,
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"),
)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
model.train()
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model)))
# inference encoder and decoder with MAS
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"d_vectors": d_vector})
self.assertEqual(y["z"].shape, mel_spec.shape)
self.assertEqual(y["logdet"].shape, torch.Size([batch_size]))
self.assertEqual(y["y_mean"].shape, mel_spec.shape)
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape)
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],))
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,))
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,))
def test_forward_with_d_vector(self):
self._test_forward_with_d_vector(1)
self._test_forward_with_d_vector(3)
def _test_forward_with_speaker_id(self, batch_size):
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device)
# create model
config = GlowTTSConfig(
num_chars=32,
use_speaker_embedding=True,
num_speakers=24,
)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
model.train()
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model)))
# inference encoder and decoder with MAS
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"speaker_ids": speaker_ids})
self.assertEqual(y["z"].shape, mel_spec.shape)
self.assertEqual(y["logdet"].shape, torch.Size([batch_size]))
self.assertEqual(y["y_mean"].shape, mel_spec.shape)
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape)
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],))
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,))
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,))
def test_forward_with_speaker_id(self):
self._test_forward_with_speaker_id(1)
self._test_forward_with_speaker_id(3)
def _assert_inference_outputs(self, outputs, input_dummy, mel_spec):
output_shape = outputs["model_outputs"].shape
self.assertEqual(outputs["model_outputs"].shape[::2], mel_spec.shape[::2])
self.assertEqual(outputs["logdet"], None)
self.assertEqual(outputs["y_mean"].shape, output_shape)
self.assertEqual(outputs["y_log_scale"].shape, output_shape)
self.assertEqual(outputs["alignments"].shape, output_shape[:2] + (input_dummy.shape[1],))
self.assertEqual(outputs["durations_log"].shape, input_dummy.shape + (1,))
self.assertEqual(outputs["total_durations_log"].shape, input_dummy.shape + (1,))
def _test_inference(self, batch_size):
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
config = GlowTTSConfig(num_chars=32)
model = GlowTTS(config).to(device)
model.eval()
outputs = model.inference(input_dummy, {"x_lengths": input_lengths})
self._assert_inference_outputs(outputs, input_dummy, mel_spec)
def test_inference(self):
self._test_inference(1)
self._test_inference(3)
def _test_inference_with_d_vector(self, batch_size):
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
d_vector = torch.rand(batch_size, 256).to(device)
config = GlowTTSConfig(
num_chars=32,
use_d_vector_file=True,
d_vector_dim=256,
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"),
)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
model.eval()
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "d_vectors": d_vector})
self._assert_inference_outputs(outputs, input_dummy, mel_spec)
def test_inference_with_d_vector(self):
self._test_inference_with_d_vector(1)
self._test_inference_with_d_vector(3)
def _test_inference_with_speaker_ids(self, batch_size):
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device)
# create model
config = GlowTTSConfig(
num_chars=32,
use_speaker_embedding=True,
num_speakers=24,
)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids})
self._assert_inference_outputs(outputs, input_dummy, mel_spec)
def test_inference_with_speaker_ids(self):
self._test_inference_with_speaker_ids(1)
self._test_inference_with_speaker_ids(3)
def _test_inference_with_MAS(self, batch_size):
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
# create model
config = GlowTTSConfig(num_chars=32)
model = GlowTTS(config).to(device)
model.eval()
# inference encoder and decoder with MAS
y = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths)
y2 = model.decoder_inference(mel_spec, mel_lengths)
assert (
y2["model_outputs"].shape == y["model_outputs"].shape
), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format(
y["model_outputs"].shape, y2["model_outputs"].shape
)
def test_inference_with_MAS(self):
self._test_inference_with_MAS(1)
self._test_inference_with_MAS(3)
def test_train_step(self):
batch_size = BATCH_SIZE
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
criterion = GlowTTSLoss()
# model to train
config = GlowTTSConfig(num_chars=32)
model = GlowTTS(config).to(device)
# reference model to compare model weights
model_ref = GlowTTS(config).to(device)
model.train()
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model)))
# pass the state to ref model
model_ref.load_state_dict(copy.deepcopy(model.state_dict()))
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=0.001)
for _ in range(5):
optimizer.zero_grad()
outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, None)
loss_dict = criterion(
outputs["z"],
outputs["y_mean"],
outputs["y_log_scale"],
outputs["logdet"],
mel_lengths,
outputs["durations_log"],
outputs["total_durations_log"],
input_lengths,
)
loss = loss_dict["loss"]
loss.backward()
optimizer.step()
# check parameter changes
self._check_parameter_changes(model, model_ref)
def test_train_eval_log(self):
batch_size = BATCH_SIZE
input_dummy, input_lengths, mel_spec, mel_lengths, _ = self._create_inputs(batch_size)
batch = {}
batch["text_input"] = input_dummy
batch["text_lengths"] = input_lengths
batch["mel_lengths"] = mel_lengths
batch["mel_input"] = mel_spec
batch["d_vectors"] = None
batch["speaker_ids"] = None
config = GlowTTSConfig(num_chars=32)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
model.run_data_dep_init = False
model.train()
logger = TensorboardLogger(
log_dir=os.path.join(get_tests_output_path(), "dummy_glow_tts_logs"), model_name="glow_tts_test_train_log"
)
criterion = model.get_criterion()
outputs, _ = model.train_step(batch, criterion)
model.train_log(batch, outputs, logger, None, 1)
model.eval_log(batch, outputs, logger, None, 1)
logger.finish()
def test_test_run(self):
config = GlowTTSConfig(num_chars=32)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
model.run_data_dep_init = False
model.eval()
test_figures, test_audios = model.test_run(None)
self.assertTrue(test_figures is not None)
self.assertTrue(test_audios is not None)
def test_load_checkpoint(self):
chkp_path = os.path.join(get_tests_output_path(), "dummy_glow_tts_checkpoint.pth")
config = GlowTTSConfig(num_chars=32)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
chkp = {}
chkp["model"] = model.state_dict()
torch.save(chkp, chkp_path)
model.load_checkpoint(config, chkp_path)
self.assertTrue(model.training)
model.load_checkpoint(config, chkp_path, eval=True)
self.assertFalse(model.training)
def test_get_criterion(self):
config = GlowTTSConfig(num_chars=32)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
criterion = model.get_criterion()
self.assertTrue(criterion is not None)
def test_init_from_config(self):
config = GlowTTSConfig(num_chars=32)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
config = GlowTTSConfig(num_chars=32, num_speakers=2)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
self.assertTrue(model.num_speakers == 2)
self.assertTrue(not hasattr(model, "emb_g"))
config = GlowTTSConfig(num_chars=32, num_speakers=2, use_speaker_embedding=True)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
self.assertTrue(model.num_speakers == 2)
self.assertTrue(hasattr(model, "emb_g"))
config = GlowTTSConfig(
num_chars=32,
num_speakers=2,
use_speaker_embedding=True,
speakers_file=os.path.join(get_tests_data_path(), "ljspeech", "speakers.json"),
)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
self.assertTrue(model.num_speakers == 10)
self.assertTrue(hasattr(model, "emb_g"))
config = GlowTTSConfig(
num_chars=32,
use_d_vector_file=True,
d_vector_dim=256,
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"),
)
model = GlowTTS.init_from_config(config, verbose=False).to(device)
self.assertTrue(model.num_speakers == 1)
self.assertTrue(not hasattr(model, "emb_g"))
self.assertTrue(model.c_in_channels == config.d_vector_dim)
|