Spaces:
Runtime error
Runtime error
import os | |
from trainer import Trainer, TrainerArgs | |
from TTS.config.shared_configs import BaseAudioConfig | |
from TTS.tts.configs.glow_tts_config import GlowTTSConfig | |
from TTS.tts.configs.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.glow_tts import GlowTTS | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio import AudioProcessor | |
# set experiment paths | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
dataset_path = os.path.join(output_path, "../VCTK/") | |
# download the dataset if not downloaded | |
if not os.path.exists(dataset_path): | |
from TTS.utils.downloaders import download_vctk | |
download_vctk(dataset_path) | |
# define dataset config | |
dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=dataset_path) | |
# define audio config | |
# β resample the dataset externally using `TTS/bin/resample.py` and set `resample=False` for faster training | |
audio_config = BaseAudioConfig(sample_rate=22050, resample=True, do_trim_silence=True, trim_db=23.0) | |
# define model config | |
config = GlowTTSConfig( | |
batch_size=64, | |
eval_batch_size=16, | |
num_loader_workers=4, | |
num_eval_loader_workers=4, | |
precompute_num_workers=4, | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
text_cleaner="phoneme_cleaners", | |
use_phonemes=True, | |
phoneme_language="en-us", | |
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
print_step=25, | |
print_eval=False, | |
mixed_precision=True, | |
output_path=output_path, | |
datasets=[dataset_config], | |
use_speaker_embedding=True, | |
min_text_len=0, | |
max_text_len=500, | |
min_audio_len=0, | |
max_audio_len=500000, | |
) | |
# INITIALIZE THE AUDIO PROCESSOR | |
# Audio processor is used for feature extraction and audio I/O. | |
# It mainly serves to the dataloader and the training loggers. | |
ap = AudioProcessor.init_from_config(config) | |
# INITIALIZE THE TOKENIZER | |
# Tokenizer is used to convert text to sequences of token IDs. | |
# If characters are not defined in the config, default characters are passed to the config | |
tokenizer, config = TTSTokenizer.init_from_config(config) | |
# LOAD DATA SAMPLES | |
# Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
# You can define your custom sample loader returning the list of samples. | |
# Or define your custom formatter and pass it to the `load_tts_samples`. | |
# Check `TTS.tts.datasets.load_tts_samples` for more details. | |
train_samples, eval_samples = load_tts_samples( | |
dataset_config, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init speaker manager for multi-speaker training | |
# it maps speaker-id to speaker-name in the model and data-loader | |
speaker_manager = SpeakerManager() | |
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") | |
config.num_speakers = speaker_manager.num_speakers | |
# init model | |
model = GlowTTS(config, ap, tokenizer, speaker_manager=speaker_manager) | |
# INITIALIZE THE TRAINER | |
# Trainer provides a generic API to train all the πΈTTS models with all its perks like mixed-precision training, | |
# distributed training, etc. | |
trainer = Trainer( | |
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
) | |
# AND... 3,2,1... π | |
trainer.fit() | |