Spaces:
Runtime error
Runtime error
import tempfile | |
import gradio as gr | |
import subprocess | |
import os, stat | |
import uuid | |
from googletrans import Translator | |
from TTS.api import TTS | |
import ffmpeg | |
from faster_whisper import WhisperModel | |
from scipy.signal import wiener | |
import soundfile as sf | |
from pydub import AudioSegment | |
import numpy as np | |
import librosa | |
from zipfile import ZipFile | |
import shlex | |
import cv2 | |
import torch | |
import torchvision | |
from tqdm import tqdm | |
from numba import jit | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
ZipFile("ffmpeg.zip").extractall() | |
st = os.stat('ffmpeg') | |
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC) | |
#Whisper | |
model_size = "small" | |
model = WhisperModel(model_size, device="cuda", compute_type="float16") | |
def check_for_faces(video_path): | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
cap = cv2.VideoCapture(video_path) | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = face_cascade.detectMultiScale(gray, 1.1, 4) | |
if len(faces) > 0: | |
return True | |
return False | |
def process_video(radio, video, target_language): | |
if target_language is None: | |
return gr.Error("Please select a Target Language for Dubbing.") | |
run_uuid = uuid.uuid4().hex[:6] | |
output_filename = f"{run_uuid}_resized_video.mp4" | |
ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run() | |
video_path = output_filename | |
if not os.path.exists(video_path): | |
return f"Error: {video_path} does not exist." | |
# Move the duration check here | |
video_info = ffmpeg.probe(video_path) | |
video_duration = float(video_info['streams'][0]['duration']) | |
if video_duration > 60: | |
os.remove(video_path) # Delete the resized video | |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.") | |
ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run() | |
#y, sr = sf.read(f"{run_uuid}_output_audio.wav") | |
#y = y.astype(np.float32) | |
#y_denoised = wiener(y) | |
#sf.write(f"{run_uuid}_output_audio_denoised.wav", y_denoised, sr) | |
#sound = AudioSegment.from_file(f"{run_uuid}_output_audio_denoised.wav", format="wav") | |
#sound = sound.apply_gain(0) | |
#sound = sound.low_pass_filter(3000).high_pass_filter(100) | |
#sound.export(f"{run_uuid}_output_audio_processed.wav", format="wav") | |
shell_command = f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ") | |
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True) | |
segments, info = model.transcribe(f"{run_uuid}_output_audio_final.wav", beam_size=5) | |
whisper_text = " ".join(segment.text for segment in segments) | |
whisper_language = info.language | |
print(whisper_text) | |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'} | |
target_language_code = language_mapping[target_language] | |
translator = Translator() | |
try: | |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text | |
print(translated_text) | |
except AttributeError as e: | |
print("Failed to translate text. Likely an issue with token extraction in the Google Translate API.") | |
translated_text = "Translation failed due to API issue." | |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1") | |
tts.to('cuda') | |
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code) | |
pad_top = 0 | |
pad_bottom = 15 | |
pad_left = 0 | |
pad_right = 0 | |
rescaleFactor = 1 | |
video_path_fix = video_path | |
if has_closeup_face: | |
has_face = True | |
else: | |
has_face = check_for_faces(video_path) | |
if has_face: | |
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '{run_uuid}_output_synth.wav' --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} --nosmooth --outfile '{run_uuid}_output_video.mp4'" | |
subprocess.run(cmd, shell=True) | |
else: | |
# Merge audio with the original video without running Wav2Lip | |
cmd = f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4" | |
subprocess.run(cmd, shell=True) | |
if not os.path.exists(f"{run_uuid}_output_video.mp4"): | |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.") | |
output_video_path = f"{run_uuid}_output_video.mp4" | |
# Cleanup: Delete all generated files except the final output video | |
files_to_delete = [ | |
f"{run_uuid}_resized_video.mp4", | |
f"{run_uuid}_output_audio.wav", | |
f"{run_uuid}_output_audio_final.wav", | |
f"{run_uuid}_output_synth.wav" | |
] | |
for file in files_to_delete: | |
try: | |
os.remove(file) | |
except FileNotFoundError: | |
print(f"File {file} not found for deletion.") | |
return output_video_path | |
def swap(radio): | |
if(radio == "Upload"): | |
return gr.update(source="upload") | |
else: | |
return gr.update(source="webcam") | |
video = gr.Video() | |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False) | |
iface = gr.Interface( | |
fn=process_video, | |
inputs=[ | |
radio, | |
video, | |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish") | |
checkbox = gr.Checkbox(label="Video has a close-up face", default=False) | |
], | |
outputs=gr.Video(), | |
live=False, | |
title="AI Video Dubbing", | |
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code.""", | |
allow_flagging=False | |
) | |
with gr.Blocks() as demo: | |
iface.render() | |
radio.change(swap, inputs=[radio], outputs=video) | |
gr.Markdown(""" | |
**Note:** | |
- Video limit is 1 minute. It will dubbling all people using just one voice. | |
- Generation may take up to 5 minutes. | |
- The tool uses open-source models for all models. It's a alpha version. | |
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality. | |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py. | |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected. | |
""") | |
demo.queue(concurrency_count=1, max_size=15) | |
demo.launch() |