Spaces:
Runtime error
Runtime error
import os | |
from glob import glob | |
from trainer import Trainer, TrainerArgs | |
from TTS.tts.configs.shared_configs import BaseDatasetConfig | |
from TTS.tts.configs.vits_config import VitsConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig | |
from TTS.tts.utils.languages import LanguageManager | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio import AudioProcessor | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
mailabs_path = "/home/julian/workspace/mailabs/**" | |
dataset_paths = glob(mailabs_path) | |
dataset_config = [ | |
BaseDatasetConfig(formatter="mailabs", meta_file_train=None, path=path, language=path.split("/")[-1]) | |
for path in dataset_paths | |
] | |
audio_config = VitsAudioConfig( | |
sample_rate=16000, | |
win_length=1024, | |
hop_length=256, | |
num_mels=80, | |
mel_fmin=0, | |
mel_fmax=None, | |
) | |
vitsArgs = VitsArgs( | |
use_language_embedding=True, | |
embedded_language_dim=4, | |
use_speaker_embedding=True, | |
use_sdp=False, | |
) | |
config = VitsConfig( | |
model_args=vitsArgs, | |
audio=audio_config, | |
run_name="vits_vctk", | |
use_speaker_embedding=True, | |
batch_size=32, | |
eval_batch_size=16, | |
batch_group_size=0, | |
num_loader_workers=4, | |
num_eval_loader_workers=4, | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
text_cleaner="multilingual_cleaners", | |
use_phonemes=False, | |
phoneme_language="en-us", | |
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
compute_input_seq_cache=True, | |
print_step=25, | |
use_language_weighted_sampler=True, | |
print_eval=False, | |
mixed_precision=False, | |
min_audio_len=32 * 256 * 4, | |
max_audio_len=160000, | |
output_path=output_path, | |
datasets=dataset_config, | |
characters=CharactersConfig( | |
characters_class="TTS.tts.models.vits.VitsCharacters", | |
pad="<PAD>", | |
eos="<EOS>", | |
bos="<BOS>", | |
blank="<BLNK>", | |
characters="!¡'(),-.:;¿?abcdefghijklmnopqrstuvwxyzµßàáâäåæçèéêëìíîïñòóôöùúûüąćęłńœśşźżƒабвгдежзийклмнопрстуфхцчшщъыьэюяёєіїґӧ «°±µ»$%&‘’‚“`”„", | |
punctuations="!¡'(),-.:;¿? ", | |
phonemes=None, | |
), | |
test_sentences=[ | |
[ | |
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", | |
"mary_ann", | |
None, | |
"en_US", | |
], | |
[ | |
"Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.", | |
"ezwa", | |
None, | |
"fr_FR", | |
], | |
["Ich finde, dieses Startup ist wirklich unglaublich.", "eva_k", None, "de_DE"], | |
["Я думаю, что этот стартап действительно удивительный.", "oblomov", None, "ru_RU"], | |
], | |
) | |
# force the convertion of the custom characters to a config attribute | |
config.from_dict(config.to_dict()) | |
# init audio processor | |
ap = AudioProcessor(**config.audio.to_dict()) | |
# load training samples | |
train_samples, eval_samples = load_tts_samples( | |
dataset_config, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init speaker manager for multi-speaker training | |
# it maps speaker-id to speaker-name in the model and data-loader | |
speaker_manager = SpeakerManager() | |
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") | |
config.model_args.num_speakers = speaker_manager.num_speakers | |
language_manager = LanguageManager(config=config) | |
config.model_args.num_languages = language_manager.num_languages | |
# INITIALIZE THE TOKENIZER | |
# Tokenizer is used to convert text to sequences of token IDs. | |
# config is updated with the default characters if not defined in the config. | |
tokenizer, config = TTSTokenizer.init_from_config(config) | |
# init model | |
model = Vits(config, ap, tokenizer, speaker_manager, language_manager) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
) | |
trainer.fit() | |