artificialguybr's picture
Upload 650 files
45ee559
raw
history blame
1.47 kB
import os
from trainer import Trainer, TrainerArgs
from TTS.utils.audio import AudioProcessor
from TTS.utils.downloaders import download_thorsten_de
from TTS.vocoder.configs import UnivnetConfig
from TTS.vocoder.datasets.preprocess import load_wav_data
from TTS.vocoder.models.gan import GAN
output_path = os.path.dirname(os.path.abspath(__file__))
config = UnivnetConfig(
batch_size=64,
eval_batch_size=16,
num_loader_workers=4,
num_eval_loader_workers=4,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
seq_len=8192,
pad_short=2000,
use_noise_augment=True,
eval_split_size=10,
print_step=25,
print_eval=False,
mixed_precision=False,
lr_gen=1e-4,
lr_disc=1e-4,
data_path=os.path.join(output_path, "../thorsten-de/wavs/"),
output_path=output_path,
)
# download dataset if not already present
if not os.path.exists(config.data_path):
print("Downloading dataset")
download_path = os.path.abspath(os.path.join(os.path.abspath(config.data_path), "../../"))
download_thorsten_de(download_path)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size)
# init model
model = GAN(config, ap)
# init the trainer and πŸš€
trainer = Trainer(
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
)
trainer.fit()