artificialguybr commited on
Commit
88a4625
β€’
1 Parent(s): f64cb13

Update appf.py

Browse files
Files changed (1) hide show
  1. appf.py +51 -60
appf.py CHANGED
@@ -1,75 +1,66 @@
1
  import gradio as gr
2
  import subprocess
3
- import whisper
4
- from googletrans import Translator
5
- import asyncio
6
- import edge_tts
7
  import os
 
 
 
 
 
8
 
9
- # Extract and Transcribe Audio
10
- def extract_and_transcribe_audio(video_path):
11
- ffmpeg_command = f"ffmpeg -i '{video_path}' -acodec pcm_s24le -ar 48000 -q:a 0 -map a -y 'output_audio.wav'"
12
- subprocess.run(ffmpeg_command, shell=True)
13
- model = whisper.load_model("base")
14
- result = model.transcribe("output_audio.wav")
15
- return result["text"], result['language']
16
-
17
- # Translate Text
18
- def translate_text(whisper_text, whisper_language, target_language):
19
- language_mapping = {
20
- 'English': 'en',
21
- 'Spanish': 'es',
22
- # ... (other mappings)
23
- }
24
- target_language_code = language_mapping[target_language]
25
- translator = Translator()
26
- translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
27
- return translated_text
28
-
29
- # Generate Voice
30
- async def generate_voice(translated_text, target_language):
31
- VOICE_MAPPING = {
32
- 'English': 'en-GB-SoniaNeural',
33
- 'Spanish': 'es-ES-PabloNeural',
34
- # ... (other mappings)
35
- }
36
- voice = VOICE_MAPPING[target_language]
37
- communicate = edge_tts.Communicate(translated_text, voice)
38
- await communicate.save("output_synth.wav")
39
- return "output_synth.wav"
40
 
41
- # Generate Lip-synced Video (Placeholder)
42
- def generate_lip_synced_video(video_path, output_audio_path):
43
- # Your lip-synced video generation code here
44
- # ...
45
- return "output_high_qual.mp4"
46
 
47
- # Main function to be called by Gradio
48
- def process_video(video, target_language):
49
- video_path = "uploaded_video.mp4"
50
- with open(video_path, "wb") as f:
51
- f.write(video.read())
52
 
53
- # Step 1: Extract and Transcribe Audio
54
- whisper_text, whisper_language = extract_and_transcribe_audio(video_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- # Step 2: Translate Text
57
- translated_text = translate_text(whisper_text, whisper_language, target_language)
58
 
59
- # Step 3: Generate Voice
60
- loop = asyncio.get_event_loop()
61
- output_audio_path = loop.run_until_complete(generate_voice(translated_text, target_language))
62
 
63
- # Step 4: Generate Lip-synced Video
64
- output_video_path = generate_lip_synced_video(video_path, output_audio_path)
65
 
66
- return output_video_path
 
67
 
68
- # Gradio Interface
69
  iface = gr.Interface(
70
- fn=process_video,
71
- inputs=["file", gr.Interface.Component(type="dropdown", choices=["English", "Spanish"])],
72
- outputs="file",
 
 
 
 
73
  live=False
74
  )
75
- iface.launch()
 
 
1
  import gradio as gr
2
  import subprocess
 
 
 
 
3
  import os
4
+ from googletrans import Translator
5
+ from TTS.api import TTS
6
+ from IPython.display import Audio, display
7
+ import ffmpeg
8
+ import whisper
9
 
10
+ def process_video(video, high_quality, target_language):
11
+ try:
12
+ output_filename = "resized_video.mp4"
13
+ if high_quality:
14
+ ffmpeg.input(video).output(output_filename, vf='scale=-1:720').run()
15
+ video_path = output_filename
16
+ else:
17
+ video_path = video
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ ffmpeg.input(video_path).output('output_audio.wav', acodec='pcm_s24le', ar=48000, map='a').run()
 
 
 
 
20
 
21
+ model = whisper.load_model("base")
22
+ result = model.transcribe("output_audio.wav")
23
+ whisper_text = result["text"]
24
+ whisper_language = result['language']
 
25
 
26
+ language_mapping = {
27
+ 'English': 'en',
28
+ 'Spanish': 'es',
29
+ 'French': 'fr',
30
+ 'German': 'de',
31
+ 'Italian': 'it',
32
+ 'Portuguese': 'pt',
33
+ 'Polish': 'pl',
34
+ 'Turkish': 'tr',
35
+ 'Russian': 'ru',
36
+ 'Dutch': 'nl',
37
+ 'Czech': 'cs',
38
+ 'Arabic': 'ar',
39
+ 'Chinese (Simplified)': 'zh-cn'
40
+ }
41
+ target_language_code = language_mapping[target_language]
42
+ translator = Translator()
43
+ translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
44
 
45
+ tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True)
46
+ tts.tts_to_file(translated_text, speaker_wav='output_audio.wav', file_path="output_synth.wav", language=target_language_code)
47
 
48
+ subprocess.run(f"python inference.py --face {video_path} --audio 'output_synth.wav' --outfile 'output_high_qual.mp4'", shell=True)
 
 
49
 
50
+ return "output_high_qual.mp4"
 
51
 
52
+ except Exception as e:
53
+ return str(e)
54
 
 
55
  iface = gr.Interface(
56
+ fn=process_video,
57
+ inputs=[
58
+ gr.Video(),
59
+ gr.inputs.Checkbox(label="High Quality"),
60
+ gr.inputs.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing")
61
+ ],
62
+ outputs=gr.outputs.File(),
63
  live=False
64
  )
65
+
66
+ iface.launch(share=True)