import os from trainer import Trainer, TrainerArgs from TTS.tts.configs.align_tts_config import AlignTTSConfig from TTS.tts.configs.shared_configs import BaseDatasetConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.align_tts import AlignTTS from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor from TTS.utils.downloaders import download_thorsten_de output_path = os.path.dirname(os.path.abspath(__file__)) # init configs dataset_config = BaseDatasetConfig( formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") ) # download dataset if not already present if not os.path.exists(dataset_config.path): print("Downloading dataset") download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) config = AlignTTSConfig( batch_size=32, eval_batch_size=16, num_loader_workers=4, num_eval_loader_workers=4, run_eval=True, test_delay_epochs=-1, epochs=1000, text_cleaner="phoneme_cleaners", use_phonemes=False, phoneme_language="de", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=25, print_eval=True, mixed_precision=False, test_sentences=[ "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", "Sei eine Stimme, kein Echo.", "Es tut mir Leid David. Das kann ich leider nicht machen.", "Dieser Kuchen ist großartig. Er ist so lecker und feucht.", "Vor dem 22. November 1963.", ], output_path=output_path, datasets=[dataset_config], ) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # If characters are not defined in the config, default characters are passed to the config tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # init model model = AlignTTS(config, ap, tokenizer) # INITIALIZE THE TRAINER # Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, # distributed training, etc. trainer = Trainer( TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples ) # AND... 3,2,1... 🚀 trainer.fit()