import os # Trainer: Where the ✨️ happens. # TrainingArgs: Defines the set of arguments of the Trainer. from trainer import Trainer, TrainerArgs # GlowTTSConfig: all model related values for training, validating and testing. from TTS.tts.configs.glow_tts_config import GlowTTSConfig # BaseDatasetConfig: defines name, formatter and path of the dataset. from TTS.tts.configs.shared_configs import BaseDatasetConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.glow_tts import GlowTTS from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor from TTS.utils.downloaders import download_thorsten_de # we use the same path as this script as our training folder. output_path = os.path.dirname(os.path.abspath(__file__)) # DEFINE DATASET CONFIG # Set LJSpeech as our target dataset and define its path. # You can also use a simple Dict to define the dataset and pass it to your custom formatter. dataset_config = BaseDatasetConfig( formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") ) # download dataset if not already present if not os.path.exists(dataset_config.path): print("Downloading dataset") download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) # INITIALIZE THE TRAINING CONFIGURATION # Configure the model. Every config class inherits the BaseTTSConfig. config = GlowTTSConfig( batch_size=32, eval_batch_size=16, num_loader_workers=4, num_eval_loader_workers=4, run_eval=True, test_delay_epochs=-1, epochs=1000, text_cleaner="phoneme_cleaners", use_phonemes=True, phoneme_language="de", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=25, print_eval=False, mixed_precision=True, test_sentences=[ "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", "Sei eine Stimme, kein Echo.", "Es tut mir Leid David. Das kann ich leider nicht machen.", "Dieser Kuchen ist großartig. Er ist so lecker und feucht.", "Vor dem 22. November 1963.", ], output_path=output_path, datasets=[dataset_config], ) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # If characters are not defined in the config, default characters are passed to the config tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # INITIALIZE THE MODEL # Models take a config object and a speaker manager as input # Config defines the details of the model like the number of layers, the size of the embedding, etc. # Speaker manager is used by multi-speaker models. model = GlowTTS(config, ap, tokenizer, speaker_manager=None) # INITIALIZE THE TRAINER # Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, # distributed training, etc. trainer = Trainer( TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples ) # AND... 3,2,1... 🚀 trainer.fit()