import os from trainer import Trainer, TrainerArgs from TTS.config.shared_configs import BaseAudioConfig from TTS.tts.configs.shared_configs import BaseDatasetConfig from TTS.tts.configs.tacotron2_config import Tacotron2Config from TTS.tts.datasets import load_tts_samples from TTS.tts.models.tacotron2 import Tacotron2 from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor from TTS.utils.downloaders import download_thorsten_de # from TTS.tts.datasets.tokenizer import Tokenizer output_path = os.path.dirname(os.path.abspath(__file__)) # init configs dataset_config = BaseDatasetConfig( formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") ) # download dataset if not already present if not os.path.exists(dataset_config.path): print("Downloading dataset") download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=True, trim_db=60.0, signal_norm=False, mel_fmin=0.0, mel_fmax=8000, spec_gain=1.0, log_func="np.log", ref_level_db=20, preemphasis=0.0, ) config = Tacotron2Config( # This is the config that is saved for the future use audio=audio_config, batch_size=40, # BS of 40 and max length of 10s will use about 20GB of GPU memory eval_batch_size=16, num_loader_workers=4, num_eval_loader_workers=4, run_eval=True, test_delay_epochs=-1, r=6, gradual_training=[[0, 6, 64], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]], double_decoder_consistency=True, epochs=1000, text_cleaner="phoneme_cleaners", use_phonemes=True, phoneme_language="de", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), precompute_num_workers=8, print_step=25, print_eval=True, mixed_precision=False, test_sentences=[ "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", "Sei eine Stimme, kein Echo.", "Es tut mir Leid David. Das kann ich leider nicht machen.", "Dieser Kuchen ist großartig. Er ist so lecker und feucht.", "Vor dem 22. November 1963.", ], # max audio length of 10 seconds, feel free to increase if you got more than 20GB GPU memory max_audio_len=22050 * 10, output_path=output_path, datasets=[dataset_config], ) # init audio processor ap = AudioProcessor(**config.audio.to_dict()) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # If characters are not defined in the config, default characters are passed to the config tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # INITIALIZE THE MODEL # Models take a config object and a speaker manager as input # Config defines the details of the model like the number of layers, the size of the embedding, etc. # Speaker manager is used by multi-speaker models. model = Tacotron2(config, ap, tokenizer, speaker_manager=None) # init the trainer and 🚀 trainer = Trainer( TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples ) trainer.fit()